Loading…

Azobenzene-based ruthenium(ii) catalysts for light-controlled hydrogen generation

Eight new ruthenium(ii) half-sandwich complexes containing azobenzene-appended pyridine (1), bipyridine (2-5) and phosphine (6 and 7) ligands have been synthesized and fully characterized. UV-vis spectroscopic studies showed that the trans-to-cis photoisomerization was strongly inhibited upon coordi...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2017, Vol.46 (11), p.3569-3578
Main Authors: Telleria, A, van Leeuwen, P W N M, Freixa, Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eight new ruthenium(ii) half-sandwich complexes containing azobenzene-appended pyridine (1), bipyridine (2-5) and phosphine (6 and 7) ligands have been synthesized and fully characterized. UV-vis spectroscopic studies showed that the trans-to-cis photoisomerization was strongly inhibited upon coordination to the metal centre in azopyridine-derived ligands 1 and 2, but it remained efficient in azobenzene-appended bipyridine (3-5) and phosphine (6 and 7) ligands. The complexes were tested as precatalysts for photo-controlled hydrogen generation by hydrolytic decomposition of ammonia-borane (AB). In situ irradiation of the reaction mixtures of compounds [Ru(p-Cym)(6)Cl]Cl and [Ru(p-Cym)(7)Cl]Cl induced a clear change in the catalytic reaction rate, serving as a proof of concept for light-controlled hydrogen generation.
ISSN:1477-9226
1477-9234
DOI:10.1039/c7dt00542c