Loading…
Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments
A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the bounda...
Saved in:
Published in: | Automatica (Oxford) 2008-05, Vol.44 (5), p.1310-1318 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443 |
container_end_page | 1318 |
container_issue | 5 |
container_start_page | 1310 |
container_title | Automatica (Oxford) |
container_volume | 44 |
creator | Dos Santos, V. Bastin, G. Coron, J.-M. d’Andréa-Novel, B. |
description | A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the boundary conditions and the integral control gains. Previous stability results are extended to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be implemented as a feedback of the state measured only at the boundaries. The control design method is illustrated with a hydraulic application, namely the level and flow regulation in a reach of the Sambre river and in the micro-channel of Valence, respectively through simulations and experimentations. |
doi_str_mv | 10.1016/j.automatica.2007.09.022 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02014731v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109807004475</els_id><sourcerecordid>oai_HAL_hal_02014731v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhi0EUkPb_-ALBw67jD82a3NrK6BIkXqgnC2vd5Y4ctaR7abk3-MlqBx7ssZ6nnk1LyGUQcuArT_tWvtU4t4W72zLAfoWdAucvyErpnrRcCXWb8kKALqGgVYX5H3OuzpKpviKhNv4NI82naiLc0kx0GdfttTPBX8lG6h1xceZTjHR7emAaYjBO5pPueA-0zgtWsZ0tH-xYJ_zZ_qj2MEHX07UziPF31Xze5xLviLvJhsyXv97L8nPr18e7-6bzcO373c3m8YJxUsjnJDYgRo6zRXno4V-EEPfrzupmUKNWkOnR752OCAHJftJjgx7zYGhklJcko_nvVsbzKGG1_tMtN7c32zM8geVlL1gR1ZZdWZdijknnF4EBmZp2OzM_4bN0rABXTfwqn44qwebnQ1TsrPz-cXnIEBLvkTcnjmsNx89JpOdx9nh6BO6YsboXw_7A-q-l9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dos Santos, V. ; Bastin, G. ; Coron, J.-M. ; d’Andréa-Novel, B.</creator><creatorcontrib>Dos Santos, V. ; Bastin, G. ; Coron, J.-M. ; d’Andréa-Novel, B.</creatorcontrib><description>A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the boundary conditions and the integral control gains. Previous stability results are extended to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be implemented as a feedback of the state measured only at the boundaries. The control design method is illustrated with a hydraulic application, namely the level and flow regulation in a reach of the Sambre river and in the micro-channel of Valence, respectively through simulations and experimentations.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2007.09.022</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Automatic ; Automatic Control Engineering ; Computer Science ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Engineering Sciences ; Exact sciences and technology ; Lyapunov stability ; Riemann invariants ; Saint-Venant equations ; Systems of conservation laws</subject><ispartof>Automatica (Oxford), 2008-05, Vol.44 (5), p.1310-1318</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443</citedby><cites>FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443</cites><orcidid>0000-0003-1578-4736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20309421$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02014731$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dos Santos, V.</creatorcontrib><creatorcontrib>Bastin, G.</creatorcontrib><creatorcontrib>Coron, J.-M.</creatorcontrib><creatorcontrib>d’Andréa-Novel, B.</creatorcontrib><title>Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments</title><title>Automatica (Oxford)</title><description>A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the boundary conditions and the integral control gains. Previous stability results are extended to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be implemented as a feedback of the state measured only at the boundaries. The control design method is illustrated with a hydraulic application, namely the level and flow regulation in a reach of the Sambre river and in the micro-channel of Valence, respectively through simulations and experimentations.</description><subject>Applied sciences</subject><subject>Automatic</subject><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Lyapunov stability</subject><subject>Riemann invariants</subject><subject>Saint-Venant equations</subject><subject>Systems of conservation laws</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vEzEQhi0EUkPb_-ALBw67jD82a3NrK6BIkXqgnC2vd5Y4ctaR7abk3-MlqBx7ssZ6nnk1LyGUQcuArT_tWvtU4t4W72zLAfoWdAucvyErpnrRcCXWb8kKALqGgVYX5H3OuzpKpviKhNv4NI82naiLc0kx0GdfttTPBX8lG6h1xceZTjHR7emAaYjBO5pPueA-0zgtWsZ0tH-xYJ_zZ_qj2MEHX07UziPF31Xze5xLviLvJhsyXv97L8nPr18e7-6bzcO373c3m8YJxUsjnJDYgRo6zRXno4V-EEPfrzupmUKNWkOnR752OCAHJftJjgx7zYGhklJcko_nvVsbzKGG1_tMtN7c32zM8geVlL1gR1ZZdWZdijknnF4EBmZp2OzM_4bN0rABXTfwqn44qwebnQ1TsrPz-cXnIEBLvkTcnjmsNx89JpOdx9nh6BO6YsboXw_7A-q-l9E</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Dos Santos, V.</creator><creator>Bastin, G.</creator><creator>Coron, J.-M.</creator><creator>d’Andréa-Novel, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1578-4736</orcidid></search><sort><creationdate>20080501</creationdate><title>Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments</title><author>Dos Santos, V. ; Bastin, G. ; Coron, J.-M. ; d’Andréa-Novel, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Automatic</topic><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Lyapunov stability</topic><topic>Riemann invariants</topic><topic>Saint-Venant equations</topic><topic>Systems of conservation laws</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dos Santos, V.</creatorcontrib><creatorcontrib>Bastin, G.</creatorcontrib><creatorcontrib>Coron, J.-M.</creatorcontrib><creatorcontrib>d’Andréa-Novel, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dos Santos, V.</au><au>Bastin, G.</au><au>Coron, J.-M.</au><au>d’Andréa-Novel, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments</atitle><jtitle>Automatica (Oxford)</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>44</volume><issue>5</issue><spage>1310</spage><epage>1318</epage><pages>1310-1318</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the boundary conditions and the integral control gains. Previous stability results are extended to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be implemented as a feedback of the state measured only at the boundaries. The control design method is illustrated with a hydraulic application, namely the level and flow regulation in a reach of the Sambre river and in the micro-channel of Valence, respectively through simulations and experimentations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2007.09.022</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1578-4736</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2008-05, Vol.44 (5), p.1310-1318 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02014731v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Automatic Automatic Control Engineering Computer Science Computer science control theory systems Control system synthesis Control theory. Systems Engineering Sciences Exact sciences and technology Lyapunov stability Riemann invariants Saint-Venant equations Systems of conservation laws |
title | Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20control%20with%20integral%20action%20for%20hyperbolic%20systems%20of%20conservation%20laws:%20Stability%20and%20experiments&rft.jtitle=Automatica%20(Oxford)&rft.au=Dos%20Santos,%20V.&rft.date=2008-05-01&rft.volume=44&rft.issue=5&rft.spage=1310&rft.epage=1318&rft.pages=1310-1318&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2007.09.022&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02014731v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |