Loading…

Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments

A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the bounda...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) 2008-05, Vol.44 (5), p.1310-1318
Main Authors: Dos Santos, V., Bastin, G., Coron, J.-M., d’Andréa-Novel, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443
cites cdi_FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443
container_end_page 1318
container_issue 5
container_start_page 1310
container_title Automatica (Oxford)
container_volume 44
creator Dos Santos, V.
Bastin, G.
Coron, J.-M.
d’Andréa-Novel, B.
description A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the boundary conditions and the integral control gains. Previous stability results are extended to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be implemented as a feedback of the state measured only at the boundaries. The control design method is illustrated with a hydraulic application, namely the level and flow regulation in a reach of the Sambre river and in the micro-channel of Valence, respectively through simulations and experimentations.
doi_str_mv 10.1016/j.automatica.2007.09.022
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02014731v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109807004475</els_id><sourcerecordid>oai_HAL_hal_02014731v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhi0EUkPb_-ALBw67jD82a3NrK6BIkXqgnC2vd5Y4ctaR7abk3-MlqBx7ssZ6nnk1LyGUQcuArT_tWvtU4t4W72zLAfoWdAucvyErpnrRcCXWb8kKALqGgVYX5H3OuzpKpviKhNv4NI82naiLc0kx0GdfttTPBX8lG6h1xceZTjHR7emAaYjBO5pPueA-0zgtWsZ0tH-xYJ_zZ_qj2MEHX07UziPF31Xze5xLviLvJhsyXv97L8nPr18e7-6bzcO373c3m8YJxUsjnJDYgRo6zRXno4V-EEPfrzupmUKNWkOnR752OCAHJftJjgx7zYGhklJcko_nvVsbzKGG1_tMtN7c32zM8geVlL1gR1ZZdWZdijknnF4EBmZp2OzM_4bN0rABXTfwqn44qwebnQ1TsrPz-cXnIEBLvkTcnjmsNx89JpOdx9nh6BO6YsboXw_7A-q-l9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dos Santos, V. ; Bastin, G. ; Coron, J.-M. ; d’Andréa-Novel, B.</creator><creatorcontrib>Dos Santos, V. ; Bastin, G. ; Coron, J.-M. ; d’Andréa-Novel, B.</creatorcontrib><description>A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the boundary conditions and the integral control gains. Previous stability results are extended to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be implemented as a feedback of the state measured only at the boundaries. The control design method is illustrated with a hydraulic application, namely the level and flow regulation in a reach of the Sambre river and in the micro-channel of Valence, respectively through simulations and experimentations.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2007.09.022</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Automatic ; Automatic Control Engineering ; Computer Science ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Engineering Sciences ; Exact sciences and technology ; Lyapunov stability ; Riemann invariants ; Saint-Venant equations ; Systems of conservation laws</subject><ispartof>Automatica (Oxford), 2008-05, Vol.44 (5), p.1310-1318</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443</citedby><cites>FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443</cites><orcidid>0000-0003-1578-4736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20309421$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02014731$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dos Santos, V.</creatorcontrib><creatorcontrib>Bastin, G.</creatorcontrib><creatorcontrib>Coron, J.-M.</creatorcontrib><creatorcontrib>d’Andréa-Novel, B.</creatorcontrib><title>Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments</title><title>Automatica (Oxford)</title><description>A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the boundary conditions and the integral control gains. Previous stability results are extended to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be implemented as a feedback of the state measured only at the boundaries. The control design method is illustrated with a hydraulic application, namely the level and flow regulation in a reach of the Sambre river and in the micro-channel of Valence, respectively through simulations and experimentations.</description><subject>Applied sciences</subject><subject>Automatic</subject><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Lyapunov stability</subject><subject>Riemann invariants</subject><subject>Saint-Venant equations</subject><subject>Systems of conservation laws</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vEzEQhi0EUkPb_-ALBw67jD82a3NrK6BIkXqgnC2vd5Y4ctaR7abk3-MlqBx7ssZ6nnk1LyGUQcuArT_tWvtU4t4W72zLAfoWdAucvyErpnrRcCXWb8kKALqGgVYX5H3OuzpKpviKhNv4NI82naiLc0kx0GdfttTPBX8lG6h1xceZTjHR7emAaYjBO5pPueA-0zgtWsZ0tH-xYJ_zZ_qj2MEHX07UziPF31Xze5xLviLvJhsyXv97L8nPr18e7-6bzcO373c3m8YJxUsjnJDYgRo6zRXno4V-EEPfrzupmUKNWkOnR752OCAHJftJjgx7zYGhklJcko_nvVsbzKGG1_tMtN7c32zM8geVlL1gR1ZZdWZdijknnF4EBmZp2OzM_4bN0rABXTfwqn44qwebnQ1TsrPz-cXnIEBLvkTcnjmsNx89JpOdx9nh6BO6YsboXw_7A-q-l9E</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Dos Santos, V.</creator><creator>Bastin, G.</creator><creator>Coron, J.-M.</creator><creator>d’Andréa-Novel, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1578-4736</orcidid></search><sort><creationdate>20080501</creationdate><title>Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments</title><author>Dos Santos, V. ; Bastin, G. ; Coron, J.-M. ; d’Andréa-Novel, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Automatic</topic><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Lyapunov stability</topic><topic>Riemann invariants</topic><topic>Saint-Venant equations</topic><topic>Systems of conservation laws</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dos Santos, V.</creatorcontrib><creatorcontrib>Bastin, G.</creatorcontrib><creatorcontrib>Coron, J.-M.</creatorcontrib><creatorcontrib>d’Andréa-Novel, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dos Santos, V.</au><au>Bastin, G.</au><au>Coron, J.-M.</au><au>d’Andréa-Novel, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments</atitle><jtitle>Automatica (Oxford)</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>44</volume><issue>5</issue><spage>1310</spage><epage>1318</epage><pages>1310-1318</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>A strict Lyapunov function for boundary control with integral actions of hyperbolic systems of conservation laws that can be diagonalised with Riemann invariants, is presented. The time derivative of this Lyapunov function can be made strictly negative definite by an appropriate choice of the boundary conditions and the integral control gains. Previous stability results are extended to guarantee the local convergence of the state towards a desired set point. Furthermore, the control can be implemented as a feedback of the state measured only at the boundaries. The control design method is illustrated with a hydraulic application, namely the level and flow regulation in a reach of the Sambre river and in the micro-channel of Valence, respectively through simulations and experimentations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2007.09.022</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1578-4736</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2008-05, Vol.44 (5), p.1310-1318
issn 0005-1098
1873-2836
language eng
recordid cdi_hal_primary_oai_HAL_hal_02014731v1
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Automatic
Automatic Control Engineering
Computer Science
Computer science
control theory
systems
Control system synthesis
Control theory. Systems
Engineering Sciences
Exact sciences and technology
Lyapunov stability
Riemann invariants
Saint-Venant equations
Systems of conservation laws
title Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20control%20with%20integral%20action%20for%20hyperbolic%20systems%20of%20conservation%20laws:%20Stability%20and%20experiments&rft.jtitle=Automatica%20(Oxford)&rft.au=Dos%20Santos,%20V.&rft.date=2008-05-01&rft.volume=44&rft.issue=5&rft.spage=1310&rft.epage=1318&rft.pages=1310-1318&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2007.09.022&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02014731v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-3c34e508b592822da07b3b77654918e9e99059d26cebe20847f4d1e79201e8443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true