Loading…

Chinese syzygies by insertions

We construct a finite convergent semi-quadratic presentation for the Chinese monoid by adding column generators and using combinatorial properties of insertion algorithms on Chinese staircases. We extend this presentation into a coherent one whose generators are columns, rewriting rules are defined...

Full description

Saved in:
Bibliographic Details
Published in:Semigroup forum 2022-02, Vol.104 (1), p.88-108
Main Authors: Hage, Nohra, Malbos, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-b336af9530f997beb55408824765f47c6f88aba3b815c6c7b93ce90a693d5ce03
cites cdi_FETCH-LOGICAL-c397t-b336af9530f997beb55408824765f47c6f88aba3b815c6c7b93ce90a693d5ce03
container_end_page 108
container_issue 1
container_start_page 88
container_title Semigroup forum
container_volume 104
creator Hage, Nohra
Malbos, Philippe
description We construct a finite convergent semi-quadratic presentation for the Chinese monoid by adding column generators and using combinatorial properties of insertion algorithms on Chinese staircases. We extend this presentation into a coherent one whose generators are columns, rewriting rules are defined by insertion algorithms, and whose syzygies are defined as relations among insertion algorithms. Such a coherent presentation is used for representations of Chinese monoids, in particular, it is a way to describe actions of Chinese monoids on categories.
doi_str_mv 10.1007/s00233-021-10244-4
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02015084v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622099569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b336af9530f997beb55408824765f47c6f88aba3b815c6c7b93ce90a693d5ce03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wIMUPHmITjL52BxL8QsKXvQckphtt9TdmrTC-utNXdGbp2GG530YXkLOGVwzAH2TATgiBc4oAy4EFQdkxARyyhnqQzICQE2ZYfyYnOS8grKDwhG5mC2bNuY4yf1nv2hinvh-0rQ5pm3TtfmUHNVunePZzxyTl7vb59kDnT_dP86mcxrQ6C31iMrVRiLUxmgfvZQCqooLrWQtdFB1VTnv0FdMBhW0NxiiAacMvsoQAcfkavAu3dpuUvPmUm8719iH6dzub8CBSajEBy_s5cBuUve-i3lrV90uteU9yxXnYIws3jHhAxVSl3OK9a-Wgd13ZofOipnZ786sKCEcQrnA7SKmP_U_qS8moWvG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622099569</pqid></control><display><type>article</type><title>Chinese syzygies by insertions</title><source>Springer Nature</source><creator>Hage, Nohra ; Malbos, Philippe</creator><creatorcontrib>Hage, Nohra ; Malbos, Philippe</creatorcontrib><description>We construct a finite convergent semi-quadratic presentation for the Chinese monoid by adding column generators and using combinatorial properties of insertion algorithms on Chinese staircases. We extend this presentation into a coherent one whose generators are columns, rewriting rules are defined by insertion algorithms, and whose syzygies are defined as relations among insertion algorithms. Such a coherent presentation is used for representations of Chinese monoids, in particular, it is a way to describe actions of Chinese monoids on categories.</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-021-10244-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Combinatorial analysis ; Combinatorics ; Generators ; Insertion ; Mathematics ; Mathematics and Statistics ; Monoids ; Research Article ; Staircases</subject><ispartof>Semigroup forum, 2022-02, Vol.104 (1), p.88-108</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b336af9530f997beb55408824765f47c6f88aba3b815c6c7b93ce90a693d5ce03</citedby><cites>FETCH-LOGICAL-c397t-b336af9530f997beb55408824765f47c6f88aba3b815c6c7b93ce90a693d5ce03</cites><orcidid>0000-0003-1648-5607 ; 0000-0003-4449-0091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27900,27901</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02015084$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hage, Nohra</creatorcontrib><creatorcontrib>Malbos, Philippe</creatorcontrib><title>Chinese syzygies by insertions</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>We construct a finite convergent semi-quadratic presentation for the Chinese monoid by adding column generators and using combinatorial properties of insertion algorithms on Chinese staircases. We extend this presentation into a coherent one whose generators are columns, rewriting rules are defined by insertion algorithms, and whose syzygies are defined as relations among insertion algorithms. Such a coherent presentation is used for representations of Chinese monoids, in particular, it is a way to describe actions of Chinese monoids on categories.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Generators</subject><subject>Insertion</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monoids</subject><subject>Research Article</subject><subject>Staircases</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wIMUPHmITjL52BxL8QsKXvQckphtt9TdmrTC-utNXdGbp2GG530YXkLOGVwzAH2TATgiBc4oAy4EFQdkxARyyhnqQzICQE2ZYfyYnOS8grKDwhG5mC2bNuY4yf1nv2hinvh-0rQ5pm3TtfmUHNVunePZzxyTl7vb59kDnT_dP86mcxrQ6C31iMrVRiLUxmgfvZQCqooLrWQtdFB1VTnv0FdMBhW0NxiiAacMvsoQAcfkavAu3dpuUvPmUm8719iH6dzub8CBSajEBy_s5cBuUve-i3lrV90uteU9yxXnYIws3jHhAxVSl3OK9a-Wgd13ZofOipnZ786sKCEcQrnA7SKmP_U_qS8moWvG</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hage, Nohra</creator><creator>Malbos, Philippe</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1648-5607</orcidid><orcidid>https://orcid.org/0000-0003-4449-0091</orcidid></search><sort><creationdate>20220201</creationdate><title>Chinese syzygies by insertions</title><author>Hage, Nohra ; Malbos, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b336af9530f997beb55408824765f47c6f88aba3b815c6c7b93ce90a693d5ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Generators</topic><topic>Insertion</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monoids</topic><topic>Research Article</topic><topic>Staircases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hage, Nohra</creatorcontrib><creatorcontrib>Malbos, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hage, Nohra</au><au>Malbos, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chinese syzygies by insertions</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>104</volume><issue>1</issue><spage>88</spage><epage>108</epage><pages>88-108</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>We construct a finite convergent semi-quadratic presentation for the Chinese monoid by adding column generators and using combinatorial properties of insertion algorithms on Chinese staircases. We extend this presentation into a coherent one whose generators are columns, rewriting rules are defined by insertion algorithms, and whose syzygies are defined as relations among insertion algorithms. Such a coherent presentation is used for representations of Chinese monoids, in particular, it is a way to describe actions of Chinese monoids on categories.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-021-10244-4</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1648-5607</orcidid><orcidid>https://orcid.org/0000-0003-4449-0091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0037-1912
ispartof Semigroup forum, 2022-02, Vol.104 (1), p.88-108
issn 0037-1912
1432-2137
language eng
recordid cdi_hal_primary_oai_HAL_hal_02015084v2
source Springer Nature
subjects Algebra
Algorithms
Combinatorial analysis
Combinatorics
Generators
Insertion
Mathematics
Mathematics and Statistics
Monoids
Research Article
Staircases
title Chinese syzygies by insertions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chinese%20syzygies%20by%20insertions&rft.jtitle=Semigroup%20forum&rft.au=Hage,%20Nohra&rft.date=2022-02-01&rft.volume=104&rft.issue=1&rft.spage=88&rft.epage=108&rft.pages=88-108&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-021-10244-4&rft_dat=%3Cproquest_hal_p%3E2622099569%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-b336af9530f997beb55408824765f47c6f88aba3b815c6c7b93ce90a693d5ce03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622099569&rft_id=info:pmid/&rfr_iscdi=true