Loading…

A robust region-based active contour for object segmentation in heterogeneous case

In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying o...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition and image analysis 2014, Vol.24 (1), p.24-35
Main Authors: Aitfares, W., Bouyakhf, E. H., Regragui, F., Herbulot, A., Devy, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483
cites cdi_FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483
container_end_page 35
container_issue 1
container_start_page 24
container_title Pattern recognition and image analysis
container_volume 24
creator Aitfares, W.
Bouyakhf, E. H.
Regragui, F.
Herbulot, A.
Devy, M.
description In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying on extracting the local instead of global image statistics where the local extracted area is defined by using a disk, sketched at each point along the active contour, with a constant radius size inside and outside the contour. However, the use of a constant radius may prevent the active contour getting more information from its neighborhood and thus being trapped by undesired boundaries. To avoid this error segmentation, the local extracted area using our proposed approach is determined based on using two different radii to extract separately the interior and the exterior local information of the active contour. Using synthetic and real images, our approach shows an improvement in term of computation time and outperforms the conventional methods in noisy images presenting heterogeneity in both the object of interest and the background and using inadequate contour initialization.
doi_str_mv 10.1134/S1054661814010027
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02018886v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1530992700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483</originalsourceid><addsrcrecordid>eNp1kV9LHDEUxQepoF37AXwLSKF9GL03f2ceF7EqLAhqn4dM9madZXZik9kFv71ZR6RU-hAScn7ncJJbFKcI54hCXjwgKKk1VigBAbg5KI5RKVVqjvxLPme53OtHxdeU1gBQYc2Pi_s5i6HdppFFWnVhKFubaMmsG7sdMReGMWwj8yGy0K7JjSzRakPDaMcMs25gTzRSDCsaKGwTc9l9Uhx62yf69r7Pit-_rh4vb8rF3fXt5XxROmHQlCi8FcDbvLTWYJYt5wo5aSk9LYUzVgppa-uFaW0rOC09F-RN66RWSlZiVvyccp9s3zzHbmPjSxNs19zMF83-DjhgVVV6h5n9MbHPMfzZUhqbTZcc9b19692gElDX3ABk9OwfdJ2_YMgvyRSCMFoZkSmcKBdDSpH8RwOEZj-R5tNEsuf7e7JNzvY-2sF16cPIKwUCa5k5PnEpS8OK4l8N_hv-Cnxzl68</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510376573</pqid></control><display><type>article</type><title>A robust region-based active contour for object segmentation in heterogeneous case</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Aitfares, W. ; Bouyakhf, E. H. ; Regragui, F. ; Herbulot, A. ; Devy, M.</creator><creatorcontrib>Aitfares, W. ; Bouyakhf, E. H. ; Regragui, F. ; Herbulot, A. ; Devy, M.</creatorcontrib><description>In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying on extracting the local instead of global image statistics where the local extracted area is defined by using a disk, sketched at each point along the active contour, with a constant radius size inside and outside the contour. However, the use of a constant radius may prevent the active contour getting more information from its neighborhood and thus being trapped by undesired boundaries. To avoid this error segmentation, the local extracted area using our proposed approach is determined based on using two different radii to extract separately the interior and the exterior local information of the active contour. Using synthetic and real images, our approach shows an improvement in term of computation time and outperforms the conventional methods in noisy images presenting heterogeneity in both the object of interest and the background and using inadequate contour initialization.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661814010027</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis and Understanding of Images ; Applied sciences ; Artificial intelligence ; Boundaries ; Computer Science ; Computer science; control theory; systems ; Energy ; Exact sciences and technology ; Exteriors ; Heterogeneity ; Image Processing and Computer Vision ; Image retrieval ; Methods ; Noise ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Processing ; Representation ; Segmentation ; Shape ; Signal and Image Processing ; Statistics ; Studies</subject><ispartof>Pattern recognition and image analysis, 2014, Vol.24 (1), p.24-35</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483</citedby><cites>FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483</cites><orcidid>0000-0002-8377-6474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1510376573?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,777,781,882,11669,27905,27906,36041,36042,44344</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28503194$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://laas.hal.science/hal-02018886$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aitfares, W.</creatorcontrib><creatorcontrib>Bouyakhf, E. H.</creatorcontrib><creatorcontrib>Regragui, F.</creatorcontrib><creatorcontrib>Herbulot, A.</creatorcontrib><creatorcontrib>Devy, M.</creatorcontrib><title>A robust region-based active contour for object segmentation in heterogeneous case</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying on extracting the local instead of global image statistics where the local extracted area is defined by using a disk, sketched at each point along the active contour, with a constant radius size inside and outside the contour. However, the use of a constant radius may prevent the active contour getting more information from its neighborhood and thus being trapped by undesired boundaries. To avoid this error segmentation, the local extracted area using our proposed approach is determined based on using two different radii to extract separately the interior and the exterior local information of the active contour. Using synthetic and real images, our approach shows an improvement in term of computation time and outperforms the conventional methods in noisy images presenting heterogeneity in both the object of interest and the background and using inadequate contour initialization.</description><subject>Analysis and Understanding of Images</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Boundaries</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Exteriors</subject><subject>Heterogeneity</subject><subject>Image Processing and Computer Vision</subject><subject>Image retrieval</subject><subject>Methods</subject><subject>Noise</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Processing</subject><subject>Representation</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Signal and Image Processing</subject><subject>Statistics</subject><subject>Studies</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kV9LHDEUxQepoF37AXwLSKF9GL03f2ceF7EqLAhqn4dM9madZXZik9kFv71ZR6RU-hAScn7ncJJbFKcI54hCXjwgKKk1VigBAbg5KI5RKVVqjvxLPme53OtHxdeU1gBQYc2Pi_s5i6HdppFFWnVhKFubaMmsG7sdMReGMWwj8yGy0K7JjSzRakPDaMcMs25gTzRSDCsaKGwTc9l9Uhx62yf69r7Pit-_rh4vb8rF3fXt5XxROmHQlCi8FcDbvLTWYJYt5wo5aSk9LYUzVgppa-uFaW0rOC09F-RN66RWSlZiVvyccp9s3zzHbmPjSxNs19zMF83-DjhgVVV6h5n9MbHPMfzZUhqbTZcc9b19692gElDX3ABk9OwfdJ2_YMgvyRSCMFoZkSmcKBdDSpH8RwOEZj-R5tNEsuf7e7JNzvY-2sF16cPIKwUCa5k5PnEpS8OK4l8N_hv-Cnxzl68</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Aitfares, W.</creator><creator>Bouyakhf, E. H.</creator><creator>Regragui, F.</creator><creator>Herbulot, A.</creator><creator>Devy, M.</creator><general>Springer US</general><general>Pleiades</general><general>Springer Nature B.V</general><general>MAIK Nauka/Interperiodica (МАИК Наука/Интерпериодика)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8377-6474</orcidid></search><sort><creationdate>2014</creationdate><title>A robust region-based active contour for object segmentation in heterogeneous case</title><author>Aitfares, W. ; Bouyakhf, E. H. ; Regragui, F. ; Herbulot, A. ; Devy, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis and Understanding of Images</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Boundaries</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Exteriors</topic><topic>Heterogeneity</topic><topic>Image Processing and Computer Vision</topic><topic>Image retrieval</topic><topic>Methods</topic><topic>Noise</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Processing</topic><topic>Representation</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Signal and Image Processing</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aitfares, W.</creatorcontrib><creatorcontrib>Bouyakhf, E. H.</creatorcontrib><creatorcontrib>Regragui, F.</creatorcontrib><creatorcontrib>Herbulot, A.</creatorcontrib><creatorcontrib>Devy, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aitfares, W.</au><au>Bouyakhf, E. H.</au><au>Regragui, F.</au><au>Herbulot, A.</au><au>Devy, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust region-based active contour for object segmentation in heterogeneous case</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2014</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>24</spage><epage>35</epage><pages>24-35</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying on extracting the local instead of global image statistics where the local extracted area is defined by using a disk, sketched at each point along the active contour, with a constant radius size inside and outside the contour. However, the use of a constant radius may prevent the active contour getting more information from its neighborhood and thus being trapped by undesired boundaries. To avoid this error segmentation, the local extracted area using our proposed approach is determined based on using two different radii to extract separately the interior and the exterior local information of the active contour. Using synthetic and real images, our approach shows an improvement in term of computation time and outperforms the conventional methods in noisy images presenting heterogeneity in both the object of interest and the background and using inadequate contour initialization.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S1054661814010027</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8377-6474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2014, Vol.24 (1), p.24-35
issn 1054-6618
1555-6212
language eng
recordid cdi_hal_primary_oai_HAL_hal_02018886v1
source ABI/INFORM Global; Springer Nature
subjects Analysis and Understanding of Images
Applied sciences
Artificial intelligence
Boundaries
Computer Science
Computer science
control theory
systems
Energy
Exact sciences and technology
Exteriors
Heterogeneity
Image Processing and Computer Vision
Image retrieval
Methods
Noise
Pattern Recognition
Pattern recognition. Digital image processing. Computational geometry
Processing
Representation
Segmentation
Shape
Signal and Image Processing
Statistics
Studies
title A robust region-based active contour for object segmentation in heterogeneous case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20region-based%20active%20contour%20for%20object%20segmentation%20in%20heterogeneous%20case&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Aitfares,%20W.&rft.date=2014&rft.volume=24&rft.issue=1&rft.spage=24&rft.epage=35&rft.pages=24-35&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661814010027&rft_dat=%3Cproquest_hal_p%3E1530992700%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1510376573&rft_id=info:pmid/&rfr_iscdi=true