Loading…

Solving the membership problem for parabolic Möbius monoids

For λ ∈ Q , λ > 0 , consider the submonoid S λ (resp. the subgroup G λ ) of S L 2 ( Q ) generated by two parabolic matrices A λ = 1 λ 0 1 and B λ = 1 0 λ 1 . We present new results and algorithms for the membership problem for the monoids S λ . For λ ∈ N ∗ , let us also consider the families of m...

Full description

Saved in:
Bibliographic Details
Published in:Semigroup forum 2019-06, Vol.98 (3), p.556-570, Article 556
Main Authors: Esbelin, Henri-Alex, Gutan, Marin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-c8873be11191930088bae03ff1665134ff4da05f6c07a850e89ffd109a7fa79d3
cites cdi_FETCH-LOGICAL-c353t-c8873be11191930088bae03ff1665134ff4da05f6c07a850e89ffd109a7fa79d3
container_end_page 570
container_issue 3
container_start_page 556
container_title Semigroup forum
container_volume 98
creator Esbelin, Henri-Alex
Gutan, Marin
description For λ ∈ Q , λ > 0 , consider the submonoid S λ (resp. the subgroup G λ ) of S L 2 ( Q ) generated by two parabolic matrices A λ = 1 λ 0 1 and B λ = 1 0 λ 1 . We present new results and algorithms for the membership problem for the monoids S λ . For λ ∈ N ∗ , let us also consider the families of monoids and subgroups of S L 2 ( Z ) defined by S λ = 1 + λ 2 n 1 λ n 2 λ n 3 1 + λ 2 n 4 ∈ S L 2 ( Z ) ∣ ( n 1 , n 2 , n 3 , n 4 ) ∈ N 4 , G λ = 1 + λ 2 n 1 λ n 2 λ n 3 1 + λ 2 n 4 ∈ S L 2 ( Z ) ∣ ( n 1 , n 2 , n 3 , n 4 ) ∈ Z 4 . Using continued fractions with partial quotients in λ N , we characterize the matrices of the monoid S λ which belong to S λ . Our results are analogues for monoids of the classical result for groups of I. Sanov which says that G 2 = G 2 .
doi_str_mv 10.1007/s00233-019-10013-4
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02022620v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220800789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c8873be11191930088bae03ff1665134ff4da05f6c07a850e89ffd109a7fa79d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuCKxfRk6SXFNwMgzrCiAt1HdI2mWZom5p0BnwxX8AXM2NFwcWswgn_dy4fQucErghAdu0BKGMYSI5DTRiOD9CExIxiSlh2iCYALMMkJ_QYnXi_hlBDyibo5tk2W9OtoqFWUavaQjlfmz7qnS0a1UbauqiXTha2MWX0-PlRmI2PWttZU_lTdKRl49XZzztFr3e3L_MFXj7dP8xnS1yyhA245DxjhSIkzM8ZAOeFVMC0JmmaEBZrHVcSEp2WkEmegOK51hWBXGZaZnnFpuhy7FvLRvTOtNK9CyuNWMyWYvcHFChNKWxJyF6M2XDB20b5QaztxnVhPUEpBR5s8Tyk6JgqnfXeKf3bloDYGRWjURGMim-jIg4Q_weVZpCDsd3gpGn2o2xEfZjTrZT722oP9QXgvIlM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220800789</pqid></control><display><type>article</type><title>Solving the membership problem for parabolic Möbius monoids</title><source>Springer Nature</source><creator>Esbelin, Henri-Alex ; Gutan, Marin</creator><creatorcontrib>Esbelin, Henri-Alex ; Gutan, Marin</creatorcontrib><description>For λ ∈ Q , λ &gt; 0 , consider the submonoid S λ (resp. the subgroup G λ ) of S L 2 ( Q ) generated by two parabolic matrices A λ = 1 λ 0 1 and B λ = 1 0 λ 1 . We present new results and algorithms for the membership problem for the monoids S λ . For λ ∈ N ∗ , let us also consider the families of monoids and subgroups of S L 2 ( Z ) defined by S λ = 1 + λ 2 n 1 λ n 2 λ n 3 1 + λ 2 n 4 ∈ S L 2 ( Z ) ∣ ( n 1 , n 2 , n 3 , n 4 ) ∈ N 4 , G λ = 1 + λ 2 n 1 λ n 2 λ n 3 1 + λ 2 n 4 ∈ S L 2 ( Z ) ∣ ( n 1 , n 2 , n 3 , n 4 ) ∈ Z 4 . Using continued fractions with partial quotients in λ N , we characterize the matrices of the monoid S λ which belong to S λ . Our results are analogues for monoids of the classical result for groups of I. Sanov which says that G 2 = G 2 .</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-019-10013-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Science ; Discrete Mathematics ; Mathematics ; Mathematics and Statistics ; Monoids ; Quotients ; Research Article ; Subgroups</subject><ispartof>Semigroup forum, 2019-06, Vol.98 (3), p.556-570, Article 556</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c8873be11191930088bae03ff1665134ff4da05f6c07a850e89ffd109a7fa79d3</citedby><cites>FETCH-LOGICAL-c353t-c8873be11191930088bae03ff1665134ff4da05f6c07a850e89ffd109a7fa79d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://uca.hal.science/hal-02022620$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Esbelin, Henri-Alex</creatorcontrib><creatorcontrib>Gutan, Marin</creatorcontrib><title>Solving the membership problem for parabolic Möbius monoids</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>For λ ∈ Q , λ &gt; 0 , consider the submonoid S λ (resp. the subgroup G λ ) of S L 2 ( Q ) generated by two parabolic matrices A λ = 1 λ 0 1 and B λ = 1 0 λ 1 . We present new results and algorithms for the membership problem for the monoids S λ . For λ ∈ N ∗ , let us also consider the families of monoids and subgroups of S L 2 ( Z ) defined by S λ = 1 + λ 2 n 1 λ n 2 λ n 3 1 + λ 2 n 4 ∈ S L 2 ( Z ) ∣ ( n 1 , n 2 , n 3 , n 4 ) ∈ N 4 , G λ = 1 + λ 2 n 1 λ n 2 λ n 3 1 + λ 2 n 4 ∈ S L 2 ( Z ) ∣ ( n 1 , n 2 , n 3 , n 4 ) ∈ Z 4 . Using continued fractions with partial quotients in λ N , we characterize the matrices of the monoid S λ which belong to S λ . Our results are analogues for monoids of the classical result for groups of I. Sanov which says that G 2 = G 2 .</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monoids</subject><subject>Quotients</subject><subject>Research Article</subject><subject>Subgroups</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuCKxfRk6SXFNwMgzrCiAt1HdI2mWZom5p0BnwxX8AXM2NFwcWswgn_dy4fQucErghAdu0BKGMYSI5DTRiOD9CExIxiSlh2iCYALMMkJ_QYnXi_hlBDyibo5tk2W9OtoqFWUavaQjlfmz7qnS0a1UbauqiXTha2MWX0-PlRmI2PWttZU_lTdKRl49XZzztFr3e3L_MFXj7dP8xnS1yyhA245DxjhSIkzM8ZAOeFVMC0JmmaEBZrHVcSEp2WkEmegOK51hWBXGZaZnnFpuhy7FvLRvTOtNK9CyuNWMyWYvcHFChNKWxJyF6M2XDB20b5QaztxnVhPUEpBR5s8Tyk6JgqnfXeKf3bloDYGRWjURGMim-jIg4Q_weVZpCDsd3gpGn2o2xEfZjTrZT722oP9QXgvIlM</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Esbelin, Henri-Alex</creator><creator>Gutan, Marin</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20190615</creationdate><title>Solving the membership problem for parabolic Möbius monoids</title><author>Esbelin, Henri-Alex ; Gutan, Marin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c8873be11191930088bae03ff1665134ff4da05f6c07a850e89ffd109a7fa79d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monoids</topic><topic>Quotients</topic><topic>Research Article</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esbelin, Henri-Alex</creatorcontrib><creatorcontrib>Gutan, Marin</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esbelin, Henri-Alex</au><au>Gutan, Marin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the membership problem for parabolic Möbius monoids</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2019-06-15</date><risdate>2019</risdate><volume>98</volume><issue>3</issue><spage>556</spage><epage>570</epage><pages>556-570</pages><artnum>556</artnum><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>For λ ∈ Q , λ &gt; 0 , consider the submonoid S λ (resp. the subgroup G λ ) of S L 2 ( Q ) generated by two parabolic matrices A λ = 1 λ 0 1 and B λ = 1 0 λ 1 . We present new results and algorithms for the membership problem for the monoids S λ . For λ ∈ N ∗ , let us also consider the families of monoids and subgroups of S L 2 ( Z ) defined by S λ = 1 + λ 2 n 1 λ n 2 λ n 3 1 + λ 2 n 4 ∈ S L 2 ( Z ) ∣ ( n 1 , n 2 , n 3 , n 4 ) ∈ N 4 , G λ = 1 + λ 2 n 1 λ n 2 λ n 3 1 + λ 2 n 4 ∈ S L 2 ( Z ) ∣ ( n 1 , n 2 , n 3 , n 4 ) ∈ Z 4 . Using continued fractions with partial quotients in λ N , we characterize the matrices of the monoid S λ which belong to S λ . Our results are analogues for monoids of the classical result for groups of I. Sanov which says that G 2 = G 2 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-019-10013-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-1912
ispartof Semigroup forum, 2019-06, Vol.98 (3), p.556-570, Article 556
issn 0037-1912
1432-2137
language eng
recordid cdi_hal_primary_oai_HAL_hal_02022620v1
source Springer Nature
subjects Algebra
Algorithms
Computer Science
Discrete Mathematics
Mathematics
Mathematics and Statistics
Monoids
Quotients
Research Article
Subgroups
title Solving the membership problem for parabolic Möbius monoids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20membership%20problem%20for%20parabolic%20M%C3%B6bius%20monoids&rft.jtitle=Semigroup%20forum&rft.au=Esbelin,%20Henri-Alex&rft.date=2019-06-15&rft.volume=98&rft.issue=3&rft.spage=556&rft.epage=570&rft.pages=556-570&rft.artnum=556&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-019-10013-4&rft_dat=%3Cproquest_hal_p%3E2220800789%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-c8873be11191930088bae03ff1665134ff4da05f6c07a850e89ffd109a7fa79d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2220800789&rft_id=info:pmid/&rfr_iscdi=true