Loading…

Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function

A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2019-01, Vol.184, p.771-780
Main Authors: Bydder, Mark, Zaaraoui, Wafaa, Ridley, Ben, Soubrier, Manon, Bertinetti, Marie, Confort-Gouny, Sylviane, Schad, Lothar, Guye, Maxime, Ranjeva, Jean-Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93
cites cdi_FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93
container_end_page 780
container_issue
container_start_page 771
container_title NeuroImage (Orlando, Fla.)
container_volume 184
creator Bydder, Mark
Zaaraoui, Wafaa
Ridley, Ben
Soubrier, Manon
Bertinetti, Marie
Confort-Gouny, Sylviane
Schad, Lothar
Guye, Maxime
Ranjeva, Jean-Philippe
description A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function. [Display omitted]
doi_str_mv 10.1016/j.neuroimage.2018.09.071
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02059518v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811918319438</els_id><sourcerecordid>2117157127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93</originalsourceid><addsrcrecordid>eNqFkU1v2zAMho1hA9Z1_Q86bge7pGxZ0jHrN5BtQNGeBVlmUgW21Epxivz7Oc2wHnciQT58CfItCoZQIWB7vqkCTSn60a6p4oCqAl2BxA_FCYIWpRaSfzzkoi4Vov5cfMl5AwAaG3VS9Jf7YEfvGK9_Wfbz_o6VbMFCDKUPO5v9jtirD318ZTGwt03rwduhnHtuGmxiI7knG3weM5tCT2nY-7BmXbI-sNUU3NbH8LX4tLJDprO_8bR4vL56uLgtl79v7i4Wy9JxBVh2pIig61rZcE2N1q52XErn-maFuq2xVUIo5ZQSVvCuUYq7zkoA0bUkra5Pi-9H3Sc7mOc0_yTtTbTe3C6W5lADDkILVDuc2W9H9jnFl4ny1ow-OxoGGyhO2XBEiUIilzOqjqhLMedEq3_aCOZggtmYdxPMwQQD2swmzKM_jqM0n73zlEx2noKj3idyW9NH_3-RP9cvlKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117157127</pqid></control><display><type>article</type><title>Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Bydder, Mark ; Zaaraoui, Wafaa ; Ridley, Ben ; Soubrier, Manon ; Bertinetti, Marie ; Confort-Gouny, Sylviane ; Schad, Lothar ; Guye, Maxime ; Ranjeva, Jean-Philippe</creator><creatorcontrib>Bydder, Mark ; Zaaraoui, Wafaa ; Ridley, Ben ; Soubrier, Manon ; Bertinetti, Marie ; Confort-Gouny, Sylviane ; Schad, Lothar ; Guye, Maxime ; Ranjeva, Jean-Philippe</creatorcontrib><description>A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function. [Display omitted]</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2018.09.071</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>23Na MRI ; Bioengineering ; Brain ; Excitation ; fMRI ; Imaging ; Inhibition ; Life Sciences ; Motor system ; Sodium</subject><ispartof>NeuroImage (Orlando, Fla.), 2019-01, Vol.184, p.771-780</ispartof><rights>2018 Elsevier Ltd</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93</citedby><cites>FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93</cites><orcidid>0000-0002-9036-6246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-02059518$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bydder, Mark</creatorcontrib><creatorcontrib>Zaaraoui, Wafaa</creatorcontrib><creatorcontrib>Ridley, Ben</creatorcontrib><creatorcontrib>Soubrier, Manon</creatorcontrib><creatorcontrib>Bertinetti, Marie</creatorcontrib><creatorcontrib>Confort-Gouny, Sylviane</creatorcontrib><creatorcontrib>Schad, Lothar</creatorcontrib><creatorcontrib>Guye, Maxime</creatorcontrib><creatorcontrib>Ranjeva, Jean-Philippe</creatorcontrib><title>Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function</title><title>NeuroImage (Orlando, Fla.)</title><description>A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function. [Display omitted]</description><subject>23Na MRI</subject><subject>Bioengineering</subject><subject>Brain</subject><subject>Excitation</subject><subject>fMRI</subject><subject>Imaging</subject><subject>Inhibition</subject><subject>Life Sciences</subject><subject>Motor system</subject><subject>Sodium</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v2zAMho1hA9Z1_Q86bge7pGxZ0jHrN5BtQNGeBVlmUgW21Epxivz7Oc2wHnciQT58CfItCoZQIWB7vqkCTSn60a6p4oCqAl2BxA_FCYIWpRaSfzzkoi4Vov5cfMl5AwAaG3VS9Jf7YEfvGK9_Wfbz_o6VbMFCDKUPO5v9jtirD318ZTGwt03rwduhnHtuGmxiI7knG3weM5tCT2nY-7BmXbI-sNUU3NbH8LX4tLJDprO_8bR4vL56uLgtl79v7i4Wy9JxBVh2pIig61rZcE2N1q52XErn-maFuq2xVUIo5ZQSVvCuUYq7zkoA0bUkra5Pi-9H3Sc7mOc0_yTtTbTe3C6W5lADDkILVDuc2W9H9jnFl4ny1ow-OxoGGyhO2XBEiUIilzOqjqhLMedEq3_aCOZggtmYdxPMwQQD2swmzKM_jqM0n73zlEx2noKj3idyW9NH_3-RP9cvlKM</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bydder, Mark</creator><creator>Zaaraoui, Wafaa</creator><creator>Ridley, Ben</creator><creator>Soubrier, Manon</creator><creator>Bertinetti, Marie</creator><creator>Confort-Gouny, Sylviane</creator><creator>Schad, Lothar</creator><creator>Guye, Maxime</creator><creator>Ranjeva, Jean-Philippe</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9036-6246</orcidid></search><sort><creationdate>20190101</creationdate><title>Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function</title><author>Bydder, Mark ; Zaaraoui, Wafaa ; Ridley, Ben ; Soubrier, Manon ; Bertinetti, Marie ; Confort-Gouny, Sylviane ; Schad, Lothar ; Guye, Maxime ; Ranjeva, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>23Na MRI</topic><topic>Bioengineering</topic><topic>Brain</topic><topic>Excitation</topic><topic>fMRI</topic><topic>Imaging</topic><topic>Inhibition</topic><topic>Life Sciences</topic><topic>Motor system</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bydder, Mark</creatorcontrib><creatorcontrib>Zaaraoui, Wafaa</creatorcontrib><creatorcontrib>Ridley, Ben</creatorcontrib><creatorcontrib>Soubrier, Manon</creatorcontrib><creatorcontrib>Bertinetti, Marie</creatorcontrib><creatorcontrib>Confort-Gouny, Sylviane</creatorcontrib><creatorcontrib>Schad, Lothar</creatorcontrib><creatorcontrib>Guye, Maxime</creatorcontrib><creatorcontrib>Ranjeva, Jean-Philippe</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bydder, Mark</au><au>Zaaraoui, Wafaa</au><au>Ridley, Ben</au><au>Soubrier, Manon</au><au>Bertinetti, Marie</au><au>Confort-Gouny, Sylviane</au><au>Schad, Lothar</au><au>Guye, Maxime</au><au>Ranjeva, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>184</volume><spage>771</spage><epage>780</epage><pages>771-780</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function. [Display omitted]</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.neuroimage.2018.09.071</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9036-6246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2019-01, Vol.184, p.771-780
issn 1053-8119
1095-9572
language eng
recordid cdi_hal_primary_oai_HAL_hal_02059518v1
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects 23Na MRI
Bioengineering
Brain
Excitation
fMRI
Imaging
Inhibition
Life Sciences
Motor system
Sodium
title Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%2023Na%20MRI%20-%20A%20non-invasive%20window%20on%20neuroglial-vascular%20mechanisms%20underlying%20brain%20function&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Bydder,%20Mark&rft.date=2019-01-01&rft.volume=184&rft.spage=771&rft.epage=780&rft.pages=771-780&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2018.09.071&rft_dat=%3Cproquest_hal_p%3E2117157127%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117157127&rft_id=info:pmid/&rfr_iscdi=true