Loading…
Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function
A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2019-01, Vol.184, p.771-780 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93 |
container_end_page | 780 |
container_issue | |
container_start_page | 771 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 184 |
creator | Bydder, Mark Zaaraoui, Wafaa Ridley, Ben Soubrier, Manon Bertinetti, Marie Confort-Gouny, Sylviane Schad, Lothar Guye, Maxime Ranjeva, Jean-Philippe |
description | A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function.
[Display omitted] |
doi_str_mv | 10.1016/j.neuroimage.2018.09.071 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02059518v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811918319438</els_id><sourcerecordid>2117157127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93</originalsourceid><addsrcrecordid>eNqFkU1v2zAMho1hA9Z1_Q86bge7pGxZ0jHrN5BtQNGeBVlmUgW21Epxivz7Oc2wHnciQT58CfItCoZQIWB7vqkCTSn60a6p4oCqAl2BxA_FCYIWpRaSfzzkoi4Vov5cfMl5AwAaG3VS9Jf7YEfvGK9_Wfbz_o6VbMFCDKUPO5v9jtirD318ZTGwt03rwduhnHtuGmxiI7knG3weM5tCT2nY-7BmXbI-sNUU3NbH8LX4tLJDprO_8bR4vL56uLgtl79v7i4Wy9JxBVh2pIig61rZcE2N1q52XErn-maFuq2xVUIo5ZQSVvCuUYq7zkoA0bUkra5Pi-9H3Sc7mOc0_yTtTbTe3C6W5lADDkILVDuc2W9H9jnFl4ny1ow-OxoGGyhO2XBEiUIilzOqjqhLMedEq3_aCOZggtmYdxPMwQQD2swmzKM_jqM0n73zlEx2noKj3idyW9NH_3-RP9cvlKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117157127</pqid></control><display><type>article</type><title>Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Bydder, Mark ; Zaaraoui, Wafaa ; Ridley, Ben ; Soubrier, Manon ; Bertinetti, Marie ; Confort-Gouny, Sylviane ; Schad, Lothar ; Guye, Maxime ; Ranjeva, Jean-Philippe</creator><creatorcontrib>Bydder, Mark ; Zaaraoui, Wafaa ; Ridley, Ben ; Soubrier, Manon ; Bertinetti, Marie ; Confort-Gouny, Sylviane ; Schad, Lothar ; Guye, Maxime ; Ranjeva, Jean-Philippe</creatorcontrib><description>A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function.
[Display omitted]</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2018.09.071</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>23Na MRI ; Bioengineering ; Brain ; Excitation ; fMRI ; Imaging ; Inhibition ; Life Sciences ; Motor system ; Sodium</subject><ispartof>NeuroImage (Orlando, Fla.), 2019-01, Vol.184, p.771-780</ispartof><rights>2018 Elsevier Ltd</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93</citedby><cites>FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93</cites><orcidid>0000-0002-9036-6246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-02059518$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bydder, Mark</creatorcontrib><creatorcontrib>Zaaraoui, Wafaa</creatorcontrib><creatorcontrib>Ridley, Ben</creatorcontrib><creatorcontrib>Soubrier, Manon</creatorcontrib><creatorcontrib>Bertinetti, Marie</creatorcontrib><creatorcontrib>Confort-Gouny, Sylviane</creatorcontrib><creatorcontrib>Schad, Lothar</creatorcontrib><creatorcontrib>Guye, Maxime</creatorcontrib><creatorcontrib>Ranjeva, Jean-Philippe</creatorcontrib><title>Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function</title><title>NeuroImage (Orlando, Fla.)</title><description>A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function.
[Display omitted]</description><subject>23Na MRI</subject><subject>Bioengineering</subject><subject>Brain</subject><subject>Excitation</subject><subject>fMRI</subject><subject>Imaging</subject><subject>Inhibition</subject><subject>Life Sciences</subject><subject>Motor system</subject><subject>Sodium</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v2zAMho1hA9Z1_Q86bge7pGxZ0jHrN5BtQNGeBVlmUgW21Epxivz7Oc2wHnciQT58CfItCoZQIWB7vqkCTSn60a6p4oCqAl2BxA_FCYIWpRaSfzzkoi4Vov5cfMl5AwAaG3VS9Jf7YEfvGK9_Wfbz_o6VbMFCDKUPO5v9jtirD318ZTGwt03rwduhnHtuGmxiI7knG3weM5tCT2nY-7BmXbI-sNUU3NbH8LX4tLJDprO_8bR4vL56uLgtl79v7i4Wy9JxBVh2pIig61rZcE2N1q52XErn-maFuq2xVUIo5ZQSVvCuUYq7zkoA0bUkra5Pi-9H3Sc7mOc0_yTtTbTe3C6W5lADDkILVDuc2W9H9jnFl4ny1ow-OxoGGyhO2XBEiUIilzOqjqhLMedEq3_aCOZggtmYdxPMwQQD2swmzKM_jqM0n73zlEx2noKj3idyW9NH_3-RP9cvlKM</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Bydder, Mark</creator><creator>Zaaraoui, Wafaa</creator><creator>Ridley, Ben</creator><creator>Soubrier, Manon</creator><creator>Bertinetti, Marie</creator><creator>Confort-Gouny, Sylviane</creator><creator>Schad, Lothar</creator><creator>Guye, Maxime</creator><creator>Ranjeva, Jean-Philippe</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9036-6246</orcidid></search><sort><creationdate>20190101</creationdate><title>Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function</title><author>Bydder, Mark ; Zaaraoui, Wafaa ; Ridley, Ben ; Soubrier, Manon ; Bertinetti, Marie ; Confort-Gouny, Sylviane ; Schad, Lothar ; Guye, Maxime ; Ranjeva, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>23Na MRI</topic><topic>Bioengineering</topic><topic>Brain</topic><topic>Excitation</topic><topic>fMRI</topic><topic>Imaging</topic><topic>Inhibition</topic><topic>Life Sciences</topic><topic>Motor system</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bydder, Mark</creatorcontrib><creatorcontrib>Zaaraoui, Wafaa</creatorcontrib><creatorcontrib>Ridley, Ben</creatorcontrib><creatorcontrib>Soubrier, Manon</creatorcontrib><creatorcontrib>Bertinetti, Marie</creatorcontrib><creatorcontrib>Confort-Gouny, Sylviane</creatorcontrib><creatorcontrib>Schad, Lothar</creatorcontrib><creatorcontrib>Guye, Maxime</creatorcontrib><creatorcontrib>Ranjeva, Jean-Philippe</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bydder, Mark</au><au>Zaaraoui, Wafaa</au><au>Ridley, Ben</au><au>Soubrier, Manon</au><au>Bertinetti, Marie</au><au>Confort-Gouny, Sylviane</au><au>Schad, Lothar</au><au>Guye, Maxime</au><au>Ranjeva, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>184</volume><spage>771</spage><epage>780</epage><pages>771-780</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function.
[Display omitted]</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.neuroimage.2018.09.071</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9036-6246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2019-01, Vol.184, p.771-780 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02059518v1 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | 23Na MRI Bioengineering Brain Excitation fMRI Imaging Inhibition Life Sciences Motor system Sodium |
title | Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%2023Na%20MRI%20-%20A%20non-invasive%20window%20on%20neuroglial-vascular%20mechanisms%20underlying%20brain%20function&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Bydder,%20Mark&rft.date=2019-01-01&rft.volume=184&rft.spage=771&rft.epage=780&rft.pages=771-780&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2018.09.071&rft_dat=%3Cproquest_hal_p%3E2117157127%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2801-be8ee0bb67429e499c3c277ccd4f19631685588c885a52b4882cba7005b6e7a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117157127&rft_id=info:pmid/&rfr_iscdi=true |