Loading…
Kinetics of light-induced degradation in compensated boron-doped silicon investigated using photoluminescence and numerical simulation
We use photoluminescence to observe light-induced degradation in silicon in real time. Numerical simulations are used to match our results and lifetime decay data from the literature with theoretical models for the generation of the light-induced boron–oxygen defects. It is found that the existing m...
Saved in:
Published in: | Materials science in semiconductor processing 2015-05, Vol.33, p.49-57 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We use photoluminescence to observe light-induced degradation in silicon in real time. Numerical simulations are used to match our results and lifetime decay data from the literature with theoretical models for the generation of the light-induced boron–oxygen defects. It is found that the existing model of the slowly generated defect SRC, where its saturated concentration is a function of the majority carrier concentration, does not explain certain results in both p- and n-type samples. A new model is proposed in which the saturated SRC concentration is controlled by the total hole concentration under illumination. |
---|---|
ISSN: | 1369-8001 1873-4081 |
DOI: | 10.1016/j.mssp.2015.01.016 |