Loading…

Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering

The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K,...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2019-05, Vol.45 (7), p.8313-8318
Main Authors: Delorme, F., Dujardin, R., Schoenstein, F., Pintault, B., Belleville, P., Autret, C., Monot-Laffez, I., Giovannelli, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943
cites cdi_FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943
container_end_page 8318
container_issue 7
container_start_page 8313
container_title Ceramics international
container_volume 45
creator Delorme, F.
Dujardin, R.
Schoenstein, F.
Pintault, B.
Belleville, P.
Autret, C.
Monot-Laffez, I.
Giovannelli, F.
description The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K, SnO appears whereas at higher temperatures, samples are composed by SnO2 and metal Sn. Three different cycles have been developed that allow achieving high densities (≥94%). The study of the grain size shows that when the density increases the grain size increases to reach 60–70 nm for the high density samples. Therefore, SPS can be successfully used to produce dense nanostructured SnO2 ceramics without any sintering agent. Nanostructuring is very efficient to lower thermal conductivity as values as low as 6.59 and 3.99 W m−1.K−1 at 373 and 1000 K respectively, are measured in SPS nanostructured ceramics. Moreover, the transport properties of the dense ceramics are the best reported for undoped SnO2.
doi_str_mv 10.1016/j.ceramint.2019.01.138
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02060578v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884219301567</els_id><sourcerecordid>S0272884219301567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKevILn1ovUkabP0bmOoE4YTptchTU80c2tH0g329rZUvfXqwOH__sP5CLllkDJg8n6TWgxm5-s25cCKFFjKhDojI6YmIhFFLs_JCPiEJ0pl_JJcxbiBDiwyGJHpi6mb2IaDbQ_B1x-0cbTCOiJd1ytOh2YbaXmi670JX_R1a-LO0HV3Dnvgmlw4s4148zPH5P3x4W2-SJarp-f5bJlYIVmb5BmWsrKgnOSmMDkUOWYOMqisNfkEMuVK5ZRSQgnLS8mQY2WcMcJKVRaZGJO7offTbPU--J0JJ90Yrxezpe53wEFCPlFH1mXlkLWhiTGg-wMY6N6Z3uhfZ7p3poHpzlkHTgcQu0-OHoOO1mNtsfIBbaurxv9X8Q1_73hl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering</title><source>ScienceDirect Freedom Collection</source><creator>Delorme, F. ; Dujardin, R. ; Schoenstein, F. ; Pintault, B. ; Belleville, P. ; Autret, C. ; Monot-Laffez, I. ; Giovannelli, F.</creator><creatorcontrib>Delorme, F. ; Dujardin, R. ; Schoenstein, F. ; Pintault, B. ; Belleville, P. ; Autret, C. ; Monot-Laffez, I. ; Giovannelli, F.</creatorcontrib><description>The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K, SnO appears whereas at higher temperatures, samples are composed by SnO2 and metal Sn. Three different cycles have been developed that allow achieving high densities (≥94%). The study of the grain size shows that when the density increases the grain size increases to reach 60–70 nm for the high density samples. Therefore, SPS can be successfully used to produce dense nanostructured SnO2 ceramics without any sintering agent. Nanostructuring is very efficient to lower thermal conductivity as values as low as 6.59 and 3.99 W m−1.K−1 at 373 and 1000 K respectively, are measured in SPS nanostructured ceramics. Moreover, the transport properties of the dense ceramics are the best reported for undoped SnO2.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2019.01.138</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Condensed Matter ; Cristallography ; Engineering Sciences ; Inorganic chemistry ; Materials ; Materials Science ; Nanostructuring ; Physics ; Spark plasma sintering ; Strongly Correlated Electrons ; Superconductivity ; Thermal conductivity ; Thermoelectric ; Tin oxide</subject><ispartof>Ceramics international, 2019-05, Vol.45 (7), p.8313-8318</ispartof><rights>2019 Elsevier Ltd and Techna Group S.r.l.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943</citedby><cites>FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943</cites><orcidid>0000-0003-0716-0827 ; 0000-0003-1403-2751 ; 0000-0003-1248-077X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02060578$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delorme, F.</creatorcontrib><creatorcontrib>Dujardin, R.</creatorcontrib><creatorcontrib>Schoenstein, F.</creatorcontrib><creatorcontrib>Pintault, B.</creatorcontrib><creatorcontrib>Belleville, P.</creatorcontrib><creatorcontrib>Autret, C.</creatorcontrib><creatorcontrib>Monot-Laffez, I.</creatorcontrib><creatorcontrib>Giovannelli, F.</creatorcontrib><title>Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering</title><title>Ceramics international</title><description>The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K, SnO appears whereas at higher temperatures, samples are composed by SnO2 and metal Sn. Three different cycles have been developed that allow achieving high densities (≥94%). The study of the grain size shows that when the density increases the grain size increases to reach 60–70 nm for the high density samples. Therefore, SPS can be successfully used to produce dense nanostructured SnO2 ceramics without any sintering agent. Nanostructuring is very efficient to lower thermal conductivity as values as low as 6.59 and 3.99 W m−1.K−1 at 373 and 1000 K respectively, are measured in SPS nanostructured ceramics. Moreover, the transport properties of the dense ceramics are the best reported for undoped SnO2.</description><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Cristallography</subject><subject>Engineering Sciences</subject><subject>Inorganic chemistry</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Nanostructuring</subject><subject>Physics</subject><subject>Spark plasma sintering</subject><subject>Strongly Correlated Electrons</subject><subject>Superconductivity</subject><subject>Thermal conductivity</subject><subject>Thermoelectric</subject><subject>Tin oxide</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoOKevILn1ovUkabP0bmOoE4YTptchTU80c2tH0g329rZUvfXqwOH__sP5CLllkDJg8n6TWgxm5-s25cCKFFjKhDojI6YmIhFFLs_JCPiEJ0pl_JJcxbiBDiwyGJHpi6mb2IaDbQ_B1x-0cbTCOiJd1ytOh2YbaXmi670JX_R1a-LO0HV3Dnvgmlw4s4148zPH5P3x4W2-SJarp-f5bJlYIVmb5BmWsrKgnOSmMDkUOWYOMqisNfkEMuVK5ZRSQgnLS8mQY2WcMcJKVRaZGJO7offTbPU--J0JJ90Yrxezpe53wEFCPlFH1mXlkLWhiTGg-wMY6N6Z3uhfZ7p3poHpzlkHTgcQu0-OHoOO1mNtsfIBbaurxv9X8Q1_73hl</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Delorme, F.</creator><creator>Dujardin, R.</creator><creator>Schoenstein, F.</creator><creator>Pintault, B.</creator><creator>Belleville, P.</creator><creator>Autret, C.</creator><creator>Monot-Laffez, I.</creator><creator>Giovannelli, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0716-0827</orcidid><orcidid>https://orcid.org/0000-0003-1403-2751</orcidid><orcidid>https://orcid.org/0000-0003-1248-077X</orcidid></search><sort><creationdate>20190501</creationdate><title>Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering</title><author>Delorme, F. ; Dujardin, R. ; Schoenstein, F. ; Pintault, B. ; Belleville, P. ; Autret, C. ; Monot-Laffez, I. ; Giovannelli, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Cristallography</topic><topic>Engineering Sciences</topic><topic>Inorganic chemistry</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Nanostructuring</topic><topic>Physics</topic><topic>Spark plasma sintering</topic><topic>Strongly Correlated Electrons</topic><topic>Superconductivity</topic><topic>Thermal conductivity</topic><topic>Thermoelectric</topic><topic>Tin oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delorme, F.</creatorcontrib><creatorcontrib>Dujardin, R.</creatorcontrib><creatorcontrib>Schoenstein, F.</creatorcontrib><creatorcontrib>Pintault, B.</creatorcontrib><creatorcontrib>Belleville, P.</creatorcontrib><creatorcontrib>Autret, C.</creatorcontrib><creatorcontrib>Monot-Laffez, I.</creatorcontrib><creatorcontrib>Giovannelli, F.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delorme, F.</au><au>Dujardin, R.</au><au>Schoenstein, F.</au><au>Pintault, B.</au><au>Belleville, P.</au><au>Autret, C.</au><au>Monot-Laffez, I.</au><au>Giovannelli, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering</atitle><jtitle>Ceramics international</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>45</volume><issue>7</issue><spage>8313</spage><epage>8318</epage><pages>8313-8318</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K, SnO appears whereas at higher temperatures, samples are composed by SnO2 and metal Sn. Three different cycles have been developed that allow achieving high densities (≥94%). The study of the grain size shows that when the density increases the grain size increases to reach 60–70 nm for the high density samples. Therefore, SPS can be successfully used to produce dense nanostructured SnO2 ceramics without any sintering agent. Nanostructuring is very efficient to lower thermal conductivity as values as low as 6.59 and 3.99 W m−1.K−1 at 373 and 1000 K respectively, are measured in SPS nanostructured ceramics. Moreover, the transport properties of the dense ceramics are the best reported for undoped SnO2.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2019.01.138</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0716-0827</orcidid><orcidid>https://orcid.org/0000-0003-1403-2751</orcidid><orcidid>https://orcid.org/0000-0003-1248-077X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-8842
ispartof Ceramics international, 2019-05, Vol.45 (7), p.8313-8318
issn 0272-8842
1873-3956
language eng
recordid cdi_hal_primary_oai_HAL_hal_02060578v1
source ScienceDirect Freedom Collection
subjects Chemical Sciences
Condensed Matter
Cristallography
Engineering Sciences
Inorganic chemistry
Materials
Materials Science
Nanostructuring
Physics
Spark plasma sintering
Strongly Correlated Electrons
Superconductivity
Thermal conductivity
Thermoelectric
Tin oxide
title Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructuring%20of%20dense%20SnO2%20ceramics%20by%20Spark%20Plasma%20Sintering&rft.jtitle=Ceramics%20international&rft.au=Delorme,%20F.&rft.date=2019-05-01&rft.volume=45&rft.issue=7&rft.spage=8313&rft.epage=8318&rft.pages=8313-8318&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2019.01.138&rft_dat=%3Celsevier_hal_p%3ES0272884219301567%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true