Loading…
Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering
The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K,...
Saved in:
Published in: | Ceramics international 2019-05, Vol.45 (7), p.8313-8318 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943 |
container_end_page | 8318 |
container_issue | 7 |
container_start_page | 8313 |
container_title | Ceramics international |
container_volume | 45 |
creator | Delorme, F. Dujardin, R. Schoenstein, F. Pintault, B. Belleville, P. Autret, C. Monot-Laffez, I. Giovannelli, F. |
description | The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K, SnO appears whereas at higher temperatures, samples are composed by SnO2 and metal Sn. Three different cycles have been developed that allow achieving high densities (≥94%). The study of the grain size shows that when the density increases the grain size increases to reach 60–70 nm for the high density samples. Therefore, SPS can be successfully used to produce dense nanostructured SnO2 ceramics without any sintering agent. Nanostructuring is very efficient to lower thermal conductivity as values as low as 6.59 and 3.99 W m−1.K−1 at 373 and 1000 K respectively, are measured in SPS nanostructured ceramics. Moreover, the transport properties of the dense ceramics are the best reported for undoped SnO2. |
doi_str_mv | 10.1016/j.ceramint.2019.01.138 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02060578v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884219301567</els_id><sourcerecordid>S0272884219301567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943</originalsourceid><addsrcrecordid>eNqFkNFKwzAUhoMoOKevILn1ovUkabP0bmOoE4YTptchTU80c2tH0g329rZUvfXqwOH__sP5CLllkDJg8n6TWgxm5-s25cCKFFjKhDojI6YmIhFFLs_JCPiEJ0pl_JJcxbiBDiwyGJHpi6mb2IaDbQ_B1x-0cbTCOiJd1ytOh2YbaXmi670JX_R1a-LO0HV3Dnvgmlw4s4148zPH5P3x4W2-SJarp-f5bJlYIVmb5BmWsrKgnOSmMDkUOWYOMqisNfkEMuVK5ZRSQgnLS8mQY2WcMcJKVRaZGJO7offTbPU--J0JJ90Yrxezpe53wEFCPlFH1mXlkLWhiTGg-wMY6N6Z3uhfZ7p3poHpzlkHTgcQu0-OHoOO1mNtsfIBbaurxv9X8Q1_73hl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering</title><source>ScienceDirect Freedom Collection</source><creator>Delorme, F. ; Dujardin, R. ; Schoenstein, F. ; Pintault, B. ; Belleville, P. ; Autret, C. ; Monot-Laffez, I. ; Giovannelli, F.</creator><creatorcontrib>Delorme, F. ; Dujardin, R. ; Schoenstein, F. ; Pintault, B. ; Belleville, P. ; Autret, C. ; Monot-Laffez, I. ; Giovannelli, F.</creatorcontrib><description>The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K, SnO appears whereas at higher temperatures, samples are composed by SnO2 and metal Sn. Three different cycles have been developed that allow achieving high densities (≥94%). The study of the grain size shows that when the density increases the grain size increases to reach 60–70 nm for the high density samples. Therefore, SPS can be successfully used to produce dense nanostructured SnO2 ceramics without any sintering agent. Nanostructuring is very efficient to lower thermal conductivity as values as low as 6.59 and 3.99 W m−1.K−1 at 373 and 1000 K respectively, are measured in SPS nanostructured ceramics. Moreover, the transport properties of the dense ceramics are the best reported for undoped SnO2.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2019.01.138</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Condensed Matter ; Cristallography ; Engineering Sciences ; Inorganic chemistry ; Materials ; Materials Science ; Nanostructuring ; Physics ; Spark plasma sintering ; Strongly Correlated Electrons ; Superconductivity ; Thermal conductivity ; Thermoelectric ; Tin oxide</subject><ispartof>Ceramics international, 2019-05, Vol.45 (7), p.8313-8318</ispartof><rights>2019 Elsevier Ltd and Techna Group S.r.l.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943</citedby><cites>FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943</cites><orcidid>0000-0003-0716-0827 ; 0000-0003-1403-2751 ; 0000-0003-1248-077X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02060578$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delorme, F.</creatorcontrib><creatorcontrib>Dujardin, R.</creatorcontrib><creatorcontrib>Schoenstein, F.</creatorcontrib><creatorcontrib>Pintault, B.</creatorcontrib><creatorcontrib>Belleville, P.</creatorcontrib><creatorcontrib>Autret, C.</creatorcontrib><creatorcontrib>Monot-Laffez, I.</creatorcontrib><creatorcontrib>Giovannelli, F.</creatorcontrib><title>Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering</title><title>Ceramics international</title><description>The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K, SnO appears whereas at higher temperatures, samples are composed by SnO2 and metal Sn. Three different cycles have been developed that allow achieving high densities (≥94%). The study of the grain size shows that when the density increases the grain size increases to reach 60–70 nm for the high density samples. Therefore, SPS can be successfully used to produce dense nanostructured SnO2 ceramics without any sintering agent. Nanostructuring is very efficient to lower thermal conductivity as values as low as 6.59 and 3.99 W m−1.K−1 at 373 and 1000 K respectively, are measured in SPS nanostructured ceramics. Moreover, the transport properties of the dense ceramics are the best reported for undoped SnO2.</description><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Cristallography</subject><subject>Engineering Sciences</subject><subject>Inorganic chemistry</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Nanostructuring</subject><subject>Physics</subject><subject>Spark plasma sintering</subject><subject>Strongly Correlated Electrons</subject><subject>Superconductivity</subject><subject>Thermal conductivity</subject><subject>Thermoelectric</subject><subject>Tin oxide</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKwzAUhoMoOKevILn1ovUkabP0bmOoE4YTptchTU80c2tH0g329rZUvfXqwOH__sP5CLllkDJg8n6TWgxm5-s25cCKFFjKhDojI6YmIhFFLs_JCPiEJ0pl_JJcxbiBDiwyGJHpi6mb2IaDbQ_B1x-0cbTCOiJd1ytOh2YbaXmi670JX_R1a-LO0HV3Dnvgmlw4s4148zPH5P3x4W2-SJarp-f5bJlYIVmb5BmWsrKgnOSmMDkUOWYOMqisNfkEMuVK5ZRSQgnLS8mQY2WcMcJKVRaZGJO7offTbPU--J0JJ90Yrxezpe53wEFCPlFH1mXlkLWhiTGg-wMY6N6Z3uhfZ7p3poHpzlkHTgcQu0-OHoOO1mNtsfIBbaurxv9X8Q1_73hl</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Delorme, F.</creator><creator>Dujardin, R.</creator><creator>Schoenstein, F.</creator><creator>Pintault, B.</creator><creator>Belleville, P.</creator><creator>Autret, C.</creator><creator>Monot-Laffez, I.</creator><creator>Giovannelli, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0716-0827</orcidid><orcidid>https://orcid.org/0000-0003-1403-2751</orcidid><orcidid>https://orcid.org/0000-0003-1248-077X</orcidid></search><sort><creationdate>20190501</creationdate><title>Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering</title><author>Delorme, F. ; Dujardin, R. ; Schoenstein, F. ; Pintault, B. ; Belleville, P. ; Autret, C. ; Monot-Laffez, I. ; Giovannelli, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Cristallography</topic><topic>Engineering Sciences</topic><topic>Inorganic chemistry</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Nanostructuring</topic><topic>Physics</topic><topic>Spark plasma sintering</topic><topic>Strongly Correlated Electrons</topic><topic>Superconductivity</topic><topic>Thermal conductivity</topic><topic>Thermoelectric</topic><topic>Tin oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delorme, F.</creatorcontrib><creatorcontrib>Dujardin, R.</creatorcontrib><creatorcontrib>Schoenstein, F.</creatorcontrib><creatorcontrib>Pintault, B.</creatorcontrib><creatorcontrib>Belleville, P.</creatorcontrib><creatorcontrib>Autret, C.</creatorcontrib><creatorcontrib>Monot-Laffez, I.</creatorcontrib><creatorcontrib>Giovannelli, F.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delorme, F.</au><au>Dujardin, R.</au><au>Schoenstein, F.</au><au>Pintault, B.</au><au>Belleville, P.</au><au>Autret, C.</au><au>Monot-Laffez, I.</au><au>Giovannelli, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering</atitle><jtitle>Ceramics international</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>45</volume><issue>7</issue><spage>8313</spage><epage>8318</epage><pages>8313-8318</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>The spark plasma sintering (SPS) behaviour of pure SnO2 has been studied. Two different SnO2 powders have been studied: a commercial 50–200 nm one and 4–6 nm nanoparticles obtained by precipitation. It has demonstrated that it is not possible to keep pure SnO2 above 1223 K by SPS. Indeed, at 1248 K, SnO appears whereas at higher temperatures, samples are composed by SnO2 and metal Sn. Three different cycles have been developed that allow achieving high densities (≥94%). The study of the grain size shows that when the density increases the grain size increases to reach 60–70 nm for the high density samples. Therefore, SPS can be successfully used to produce dense nanostructured SnO2 ceramics without any sintering agent. Nanostructuring is very efficient to lower thermal conductivity as values as low as 6.59 and 3.99 W m−1.K−1 at 373 and 1000 K respectively, are measured in SPS nanostructured ceramics. Moreover, the transport properties of the dense ceramics are the best reported for undoped SnO2.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2019.01.138</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0716-0827</orcidid><orcidid>https://orcid.org/0000-0003-1403-2751</orcidid><orcidid>https://orcid.org/0000-0003-1248-077X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8842 |
ispartof | Ceramics international, 2019-05, Vol.45 (7), p.8313-8318 |
issn | 0272-8842 1873-3956 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02060578v1 |
source | ScienceDirect Freedom Collection |
subjects | Chemical Sciences Condensed Matter Cristallography Engineering Sciences Inorganic chemistry Materials Materials Science Nanostructuring Physics Spark plasma sintering Strongly Correlated Electrons Superconductivity Thermal conductivity Thermoelectric Tin oxide |
title | Nanostructuring of dense SnO2 ceramics by Spark Plasma Sintering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructuring%20of%20dense%20SnO2%20ceramics%20by%20Spark%20Plasma%20Sintering&rft.jtitle=Ceramics%20international&rft.au=Delorme,%20F.&rft.date=2019-05-01&rft.volume=45&rft.issue=7&rft.spage=8313&rft.epage=8318&rft.pages=8313-8318&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2019.01.138&rft_dat=%3Celsevier_hal_p%3ES0272884219301567%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-54eb6dc08f62a9a5095e4f040dcca57048fb8f888383c2b61e2edafaa3c68b943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |