Loading…

In-plane and out-of-plane deformation at the sub-grain scale in polycrystalline materials assessed by confocal microscopy

High-resolution digital image correlation (HR-DIC) techniques have become essential in material mechanics to assess strain measurements at the scale of the elementary mechanisms responsible of the deformation in polycrystalline materials. The purpose of this study is to demonstrate the use of laser...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2019-05, Vol.169, p.260-274
Main Authors: Liu, J.H., Vanderesse, N., Stinville, J.-C., Pollock, T.M., Bocher, P., Texier, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-resolution digital image correlation (HR-DIC) techniques have become essential in material mechanics to assess strain measurements at the scale of the elementary mechanisms responsible of the deformation in polycrystalline materials. The purpose of this study is to demonstrate the use of laser scanning confocal microscopy (LSCM) coupled with DIC techniques to deepen knowledge on the deformation process of a polycrystalline nickel-based superalloy at room temperature. The LSCM technique is capable of detecting both in-plane and out-of-plane strain localization within slip bands at the sub-grain level. The LSCM observations are consistent with previous in-situ scanning electron microscopy (SEM) studies: The onset of crystal plasticity occurs primarily near Σ3 twin boundaries with macroscopic loading in the elastic domain (macroscopic stress as low as 80% of the 0.2% offset yield strength (Y.S.0.2%)). This intense irreversible strain localization occurs with either a high Schmid factor (μ > 0.43) or a significant elastic modulus difference between the pair of twins (ΔΕ > 100 GPa). In the plastic deformation domain, transgranular slip activity following slip systems with the highest Schmid factor is mostly responsible for the deformation at the grain level, thus leading to strain percolation. The simultaneous in-plane and out-of-plane deformation assessment via the HR-LSCM-DIC technique was found to be essential for the identification of active slip systems. Finally, the HR-LSCM-DIC technique enabled the quantification of the glide amplitude involved in the three-dimensional shearing process at the grain level that solely in-plane measurements cannot provide. [Display omitted]
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2019.03.001