Loading…

Probing the catalytically essential residues of the α-l-arabinofuranosidase from Thermobacillus xylanilyticus

The α-l-arabinofuranosidase D3 from Thermobacillus xylanilyticus is an arabinoxylan-debranching enzyme which belongs to family 51 of the glycosyl hydrolase classification. Previous studies have indicated that members of this family are retaining enzymes and may form part of the 4/7 superfamily of gl...

Full description

Saved in:
Bibliographic Details
Published in:Protein engineering 2002-01, Vol.15 (1), p.21-28
Main Authors: Debeche, Takoua, Bliard, Christophe, Debeire, Philippe, O'Donohue, Michael J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-8de2b2e4e8756edee45b28c769ab6cf6fd0e60e46dc8696666c06fd14c6be51e3
cites cdi_FETCH-LOGICAL-c472t-8de2b2e4e8756edee45b28c769ab6cf6fd0e60e46dc8696666c06fd14c6be51e3
container_end_page 28
container_issue 1
container_start_page 21
container_title Protein engineering
container_volume 15
creator Debeche, Takoua
Bliard, Christophe
Debeire, Philippe
O'Donohue, Michael J.
description The α-l-arabinofuranosidase D3 from Thermobacillus xylanilyticus is an arabinoxylan-debranching enzyme which belongs to family 51 of the glycosyl hydrolase classification. Previous studies have indicated that members of this family are retaining enzymes and may form part of the 4/7 superfamily of glycosyl hydrolases. To investigate the active site of α-l-arabinofuranosidase D3, we have used sequence alignment, site-directed mutagenesis and kinetic analyses. Likewise, we have shown that Glu28, Glu176 and Glu298 are important for catalytic activity. Kinetic data obtained for the mutant Glu176→Gln, combined with the results of chemical rescue using the mutant Glu176→Ala, have shown that Glu176 is the acid-base residue. Moreover, NMR analysis of the arabinosyl-azide adduct, which was produced by chemical rescue of the mutant Glu176→Ala, indicated that α-l-arabinofuranosidase D3 hydrolyses glycosidic bonds with retention of the anomeric configuration. The results of similar chemical rescue studies using other mutant enzymes suggest that Glu298 might be the catalytic nucleophile and that Glu28 is a third member of a catalytic triad which may be responsible for modulating the ionization state of the acid-base and implicated in substrate fixation. Overall, these findings support the hypothesis that α-l-arabinofuranosidase D3 belongs to the 4/7 superfamily and provide the first experimental evidence concerning the catalytic apparatus of a family 51 arabinofuranosidase.
doi_str_mv 10.1093/protein/15.1.21
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02074537v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/15.1.21</oup_id><sourcerecordid>18308239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-8de2b2e4e8756edee45b28c769ab6cf6fd0e60e46dc8696666c06fd14c6be51e3</originalsourceid><addsrcrecordid>eNqNkctO3DAUQK0KVAbaNTuUFVKRMuNXnGQJo8IgjWgrAULdWI5z03Fx4qmdVMxn8SP9pnrICLZ4Y-ve46P7QOiY4CnBJZutvevBdDOSTcmUkg9oQrjAKSXsYQ9NMBXl9l0eoMMQfmOMC1zSj-iAkIJTyvgEdd-9q0z3K-lXkGjVK7vpjVbWbhIIAbreKJt4CKYeICSueeH-Pac2VV7Fj64ZvOpczKsASeNdm9yuwLeuUtpYO4TkaWNVZ160Q_iE9htlA3ze3Ufo7vLr7XyRLr9dXc_Pl6nmOe3TogZaUeBQ5JmAGoBnFS10LkpVCd2IpsYgMHBR60KUIh6NY5BwLSrICLAj9GX0rpSVa29a5TfSKSMX50u5jWGKc56x_C-J7OnIxmH-iV32sjVBg41lgxuCJAXDBWVlBGcjqL0LwUPzaiZYbtchd-uQJJNE0q36ZKceqhbqN343_wicjYAb1u-wpSNsQg9Pr7jyj1LkLM_k4uGnvFn-uKILeiHv2X_AU6jM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18308239</pqid></control><display><type>article</type><title>Probing the catalytically essential residues of the α-l-arabinofuranosidase from Thermobacillus xylanilyticus</title><source>Oxford Journals Online</source><creator>Debeche, Takoua ; Bliard, Christophe ; Debeire, Philippe ; O'Donohue, Michael J.</creator><creatorcontrib>Debeche, Takoua ; Bliard, Christophe ; Debeire, Philippe ; O'Donohue, Michael J.</creatorcontrib><description>The α-l-arabinofuranosidase D3 from Thermobacillus xylanilyticus is an arabinoxylan-debranching enzyme which belongs to family 51 of the glycosyl hydrolase classification. Previous studies have indicated that members of this family are retaining enzymes and may form part of the 4/7 superfamily of glycosyl hydrolases. To investigate the active site of α-l-arabinofuranosidase D3, we have used sequence alignment, site-directed mutagenesis and kinetic analyses. Likewise, we have shown that Glu28, Glu176 and Glu298 are important for catalytic activity. Kinetic data obtained for the mutant Glu176→Gln, combined with the results of chemical rescue using the mutant Glu176→Ala, have shown that Glu176 is the acid-base residue. Moreover, NMR analysis of the arabinosyl-azide adduct, which was produced by chemical rescue of the mutant Glu176→Ala, indicated that α-l-arabinofuranosidase D3 hydrolyses glycosidic bonds with retention of the anomeric configuration. The results of similar chemical rescue studies using other mutant enzymes suggest that Glu298 might be the catalytic nucleophile and that Glu28 is a third member of a catalytic triad which may be responsible for modulating the ionization state of the acid-base and implicated in substrate fixation. Overall, these findings support the hypothesis that α-l-arabinofuranosidase D3 belongs to the 4/7 superfamily and provide the first experimental evidence concerning the catalytic apparatus of a family 51 arabinofuranosidase.</description><identifier>ISSN: 0269-2139</identifier><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1460-213X</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/15.1.21</identifier><identifier>PMID: 11842234</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Analytical chemistry ; arabinofuranosidase ; Bacillaceae - enzymology ; Biochemistry ; Biochemistry, Molecular Biology ; Catalytic Domain ; catalytic site ; chemical rescue ; Chemical Sciences ; Conserved Sequence ; family 51 ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - genetics ; Hydrogen-Ion Concentration ; Kinetics ; L-Arabinofuranosidase ; Life Sciences ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Other ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Sequence Alignment ; Sequence Homology, Amino Acid ; site-directed mutagenesis ; Thermobacillus xylanilyticus</subject><ispartof>Protein engineering, 2002-01, Vol.15 (1), p.21-28</ispartof><rights>Oxford University Press 2002</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-8de2b2e4e8756edee45b28c769ab6cf6fd0e60e46dc8696666c06fd14c6be51e3</citedby><cites>FETCH-LOGICAL-c472t-8de2b2e4e8756edee45b28c769ab6cf6fd0e60e46dc8696666c06fd14c6be51e3</cites><orcidid>0000-0001-7614-1043 ; 0000-0003-4246-3938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11842234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02074537$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Debeche, Takoua</creatorcontrib><creatorcontrib>Bliard, Christophe</creatorcontrib><creatorcontrib>Debeire, Philippe</creatorcontrib><creatorcontrib>O'Donohue, Michael J.</creatorcontrib><title>Probing the catalytically essential residues of the α-l-arabinofuranosidase from Thermobacillus xylanilyticus</title><title>Protein engineering</title><addtitle>Protein Eng</addtitle><addtitle>Protein Eng</addtitle><description>The α-l-arabinofuranosidase D3 from Thermobacillus xylanilyticus is an arabinoxylan-debranching enzyme which belongs to family 51 of the glycosyl hydrolase classification. Previous studies have indicated that members of this family are retaining enzymes and may form part of the 4/7 superfamily of glycosyl hydrolases. To investigate the active site of α-l-arabinofuranosidase D3, we have used sequence alignment, site-directed mutagenesis and kinetic analyses. Likewise, we have shown that Glu28, Glu176 and Glu298 are important for catalytic activity. Kinetic data obtained for the mutant Glu176→Gln, combined with the results of chemical rescue using the mutant Glu176→Ala, have shown that Glu176 is the acid-base residue. Moreover, NMR analysis of the arabinosyl-azide adduct, which was produced by chemical rescue of the mutant Glu176→Ala, indicated that α-l-arabinofuranosidase D3 hydrolyses glycosidic bonds with retention of the anomeric configuration. The results of similar chemical rescue studies using other mutant enzymes suggest that Glu298 might be the catalytic nucleophile and that Glu28 is a third member of a catalytic triad which may be responsible for modulating the ionization state of the acid-base and implicated in substrate fixation. Overall, these findings support the hypothesis that α-l-arabinofuranosidase D3 belongs to the 4/7 superfamily and provide the first experimental evidence concerning the catalytic apparatus of a family 51 arabinofuranosidase.</description><subject>Amino Acid Sequence</subject><subject>Analytical chemistry</subject><subject>arabinofuranosidase</subject><subject>Bacillaceae - enzymology</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Catalytic Domain</subject><subject>catalytic site</subject><subject>chemical rescue</subject><subject>Chemical Sciences</subject><subject>Conserved Sequence</subject><subject>family 51</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>L-Arabinofuranosidase</subject><subject>Life Sciences</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Other</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>site-directed mutagenesis</subject><subject>Thermobacillus xylanilyticus</subject><issn>0269-2139</issn><issn>1741-0126</issn><issn>1460-213X</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkctO3DAUQK0KVAbaNTuUFVKRMuNXnGQJo8IgjWgrAULdWI5z03Fx4qmdVMxn8SP9pnrICLZ4Y-ve46P7QOiY4CnBJZutvevBdDOSTcmUkg9oQrjAKSXsYQ9NMBXl9l0eoMMQfmOMC1zSj-iAkIJTyvgEdd-9q0z3K-lXkGjVK7vpjVbWbhIIAbreKJt4CKYeICSueeH-Pac2VV7Fj64ZvOpczKsASeNdm9yuwLeuUtpYO4TkaWNVZ160Q_iE9htlA3ze3Ufo7vLr7XyRLr9dXc_Pl6nmOe3TogZaUeBQ5JmAGoBnFS10LkpVCd2IpsYgMHBR60KUIh6NY5BwLSrICLAj9GX0rpSVa29a5TfSKSMX50u5jWGKc56x_C-J7OnIxmH-iV32sjVBg41lgxuCJAXDBWVlBGcjqL0LwUPzaiZYbtchd-uQJJNE0q36ZKceqhbqN343_wicjYAb1u-wpSNsQg9Pr7jyj1LkLM_k4uGnvFn-uKILeiHv2X_AU6jM</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Debeche, Takoua</creator><creator>Bliard, Christophe</creator><creator>Debeire, Philippe</creator><creator>O'Donohue, Michael J.</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7614-1043</orcidid><orcidid>https://orcid.org/0000-0003-4246-3938</orcidid></search><sort><creationdate>200201</creationdate><title>Probing the catalytically essential residues of the α-l-arabinofuranosidase from Thermobacillus xylanilyticus</title><author>Debeche, Takoua ; Bliard, Christophe ; Debeire, Philippe ; O'Donohue, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-8de2b2e4e8756edee45b28c769ab6cf6fd0e60e46dc8696666c06fd14c6be51e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Analytical chemistry</topic><topic>arabinofuranosidase</topic><topic>Bacillaceae - enzymology</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Catalytic Domain</topic><topic>catalytic site</topic><topic>chemical rescue</topic><topic>Chemical Sciences</topic><topic>Conserved Sequence</topic><topic>family 51</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>L-Arabinofuranosidase</topic><topic>Life Sciences</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Other</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>site-directed mutagenesis</topic><topic>Thermobacillus xylanilyticus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debeche, Takoua</creatorcontrib><creatorcontrib>Bliard, Christophe</creatorcontrib><creatorcontrib>Debeire, Philippe</creatorcontrib><creatorcontrib>O'Donohue, Michael J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Protein engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debeche, Takoua</au><au>Bliard, Christophe</au><au>Debeire, Philippe</au><au>O'Donohue, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the catalytically essential residues of the α-l-arabinofuranosidase from Thermobacillus xylanilyticus</atitle><jtitle>Protein engineering</jtitle><stitle>Protein Eng</stitle><addtitle>Protein Eng</addtitle><date>2002-01</date><risdate>2002</risdate><volume>15</volume><issue>1</issue><spage>21</spage><epage>28</epage><pages>21-28</pages><issn>0269-2139</issn><issn>1741-0126</issn><eissn>1460-213X</eissn><eissn>1741-0134</eissn><abstract>The α-l-arabinofuranosidase D3 from Thermobacillus xylanilyticus is an arabinoxylan-debranching enzyme which belongs to family 51 of the glycosyl hydrolase classification. Previous studies have indicated that members of this family are retaining enzymes and may form part of the 4/7 superfamily of glycosyl hydrolases. To investigate the active site of α-l-arabinofuranosidase D3, we have used sequence alignment, site-directed mutagenesis and kinetic analyses. Likewise, we have shown that Glu28, Glu176 and Glu298 are important for catalytic activity. Kinetic data obtained for the mutant Glu176→Gln, combined with the results of chemical rescue using the mutant Glu176→Ala, have shown that Glu176 is the acid-base residue. Moreover, NMR analysis of the arabinosyl-azide adduct, which was produced by chemical rescue of the mutant Glu176→Ala, indicated that α-l-arabinofuranosidase D3 hydrolyses glycosidic bonds with retention of the anomeric configuration. The results of similar chemical rescue studies using other mutant enzymes suggest that Glu298 might be the catalytic nucleophile and that Glu28 is a third member of a catalytic triad which may be responsible for modulating the ionization state of the acid-base and implicated in substrate fixation. Overall, these findings support the hypothesis that α-l-arabinofuranosidase D3 belongs to the 4/7 superfamily and provide the first experimental evidence concerning the catalytic apparatus of a family 51 arabinofuranosidase.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>11842234</pmid><doi>10.1093/protein/15.1.21</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7614-1043</orcidid><orcidid>https://orcid.org/0000-0003-4246-3938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-2139
ispartof Protein engineering, 2002-01, Vol.15 (1), p.21-28
issn 0269-2139
1741-0126
1460-213X
1741-0134
language eng
recordid cdi_hal_primary_oai_HAL_hal_02074537v1
source Oxford Journals Online
subjects Amino Acid Sequence
Analytical chemistry
arabinofuranosidase
Bacillaceae - enzymology
Biochemistry
Biochemistry, Molecular Biology
Catalytic Domain
catalytic site
chemical rescue
Chemical Sciences
Conserved Sequence
family 51
Glycoside Hydrolases - chemistry
Glycoside Hydrolases - genetics
Hydrogen-Ion Concentration
Kinetics
L-Arabinofuranosidase
Life Sciences
Molecular Sequence Data
Mutagenesis, Site-Directed
Mutation
Other
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Sequence Alignment
Sequence Homology, Amino Acid
site-directed mutagenesis
Thermobacillus xylanilyticus
title Probing the catalytically essential residues of the α-l-arabinofuranosidase from Thermobacillus xylanilyticus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20catalytically%20essential%20residues%20of%20the%20%CE%B1-l-arabinofuranosidase%20from%20Thermobacillus%20xylanilyticus&rft.jtitle=Protein%20engineering&rft.au=Debeche,%20Takoua&rft.date=2002-01&rft.volume=15&rft.issue=1&rft.spage=21&rft.epage=28&rft.pages=21-28&rft.issn=0269-2139&rft.eissn=1460-213X&rft_id=info:doi/10.1093/protein/15.1.21&rft_dat=%3Cproquest_hal_p%3E18308239%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-8de2b2e4e8756edee45b28c769ab6cf6fd0e60e46dc8696666c06fd14c6be51e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18308239&rft_id=info:pmid/11842234&rft_oup_id=10.1093/protein/15.1.21&rfr_iscdi=true