Loading…

Controlling the Scattering Length of Ultracold Dipolar Molecules

By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is inc...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2018-10, Vol.121 (16), p.163402-163402, Article 163402
Main Authors: Lassablière, Lucas, Quéméner, Goulven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3
cites cdi_FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3
container_end_page 163402
container_issue 16
container_start_page 163402
container_title Physical review letters
container_volume 121
creator Lassablière, Lucas
Quéméner, Goulven
description By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-range well becomes deeper and can support a certain number of bound states, which in turn bring the value of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an adimensional approach where the molecules are described by a rescaled rotational constant B[over ˜]=B/s_{E_{3}} where s_{E_{3}} is a characteristic dipolar energy. We found that molecules with B[over ˜]>10^{8} are immune to any quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach values above 10^{3}, and that the value and sign of the scattering length can be tuned. The ability to control the molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold molecules, similar to that for ultracold atoms.
doi_str_mv 10.1103/PhysRevLett.121.163402
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02078386v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129537061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3</originalsourceid><addsrcrecordid>eNpdkcFq3DAQhkVoSTZpXyEYcmkP3s5IlmTfErZNUnBpaZuz0GrHWQettZXkQN6-XpyE0tMwwzfD_HyMnSMsEUF8-rF9Sj_psaWcl8hxiUpUwI_YAkE3pUas3rAFgMCyAdAn7DSlBwBArupjdiJA1FopuWCXqzDkGLzvh_sib6n45WzOFA9tS8N93hahK-58jtYFvyk-9_vgbSy-BU9u9JTesbed9YneP9czdnf95ffqtmy_33xdXbWlq3SVS9k0QnaKlHRSoVrbBnilOokWGlevycl6o0HLibNWaW010ZRJOKgEh7UTZ-zjfHdrvdnHfmfjkwm2N7dXrTnMgIOuRa0ecWI_zOw-hj8jpWx2fXLkvR0ojMlw5I0UGtQBvfgPfQhjHKYkM4VaaD5RaqZcDClF6l4_QDAHH-YfH2byYWYf0-L58_lxvaPN69qLAPEXYY-Ghg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129517372</pqid></control><display><type>article</type><title>Controlling the Scattering Length of Ultracold Dipolar Molecules</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Lassablière, Lucas ; Quéméner, Goulven</creator><creatorcontrib>Lassablière, Lucas ; Quéméner, Goulven</creatorcontrib><description>By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-range well becomes deeper and can support a certain number of bound states, which in turn bring the value of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an adimensional approach where the molecules are described by a rescaled rotational constant B[over ˜]=B/s_{E_{3}} where s_{E_{3}} is a characteristic dipolar energy. We found that molecules with B[over ˜]&gt;10^{8} are immune to any quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach values above 10^{3}, and that the value and sign of the scattering length can be tuned. The ability to control the molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold molecules, similar to that for ultracold atoms.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.163402</identifier><identifier>PMID: 30387665</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Atomic Physics ; Circular polarization ; Condensed Matter ; Entrances ; Physics ; Quantum Gases ; Quantum Physics ; Quenching ; Rotational states ; Scattering ; Stability</subject><ispartof>Physical review letters, 2018-10, Vol.121 (16), p.163402-163402, Article 163402</ispartof><rights>Copyright American Physical Society Oct 19, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3</citedby><cites>FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3</cites><orcidid>0000-0001-9396-7701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30387665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02078386$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lassablière, Lucas</creatorcontrib><creatorcontrib>Quéméner, Goulven</creatorcontrib><title>Controlling the Scattering Length of Ultracold Dipolar Molecules</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-range well becomes deeper and can support a certain number of bound states, which in turn bring the value of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an adimensional approach where the molecules are described by a rescaled rotational constant B[over ˜]=B/s_{E_{3}} where s_{E_{3}} is a characteristic dipolar energy. We found that molecules with B[over ˜]&gt;10^{8} are immune to any quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach values above 10^{3}, and that the value and sign of the scattering length can be tuned. The ability to control the molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold molecules, similar to that for ultracold atoms.</description><subject>Atomic Physics</subject><subject>Circular polarization</subject><subject>Condensed Matter</subject><subject>Entrances</subject><subject>Physics</subject><subject>Quantum Gases</subject><subject>Quantum Physics</subject><subject>Quenching</subject><subject>Rotational states</subject><subject>Scattering</subject><subject>Stability</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkcFq3DAQhkVoSTZpXyEYcmkP3s5IlmTfErZNUnBpaZuz0GrHWQettZXkQN6-XpyE0tMwwzfD_HyMnSMsEUF8-rF9Sj_psaWcl8hxiUpUwI_YAkE3pUas3rAFgMCyAdAn7DSlBwBArupjdiJA1FopuWCXqzDkGLzvh_sib6n45WzOFA9tS8N93hahK-58jtYFvyk-9_vgbSy-BU9u9JTesbed9YneP9czdnf95ffqtmy_33xdXbWlq3SVS9k0QnaKlHRSoVrbBnilOokWGlevycl6o0HLibNWaW010ZRJOKgEh7UTZ-zjfHdrvdnHfmfjkwm2N7dXrTnMgIOuRa0ecWI_zOw-hj8jpWx2fXLkvR0ojMlw5I0UGtQBvfgPfQhjHKYkM4VaaD5RaqZcDClF6l4_QDAHH-YfH2byYWYf0-L58_lxvaPN69qLAPEXYY-Ghg</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Lassablière, Lucas</creator><creator>Quéméner, Goulven</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9396-7701</orcidid></search><sort><creationdate>20181019</creationdate><title>Controlling the Scattering Length of Ultracold Dipolar Molecules</title><author>Lassablière, Lucas ; Quéméner, Goulven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic Physics</topic><topic>Circular polarization</topic><topic>Condensed Matter</topic><topic>Entrances</topic><topic>Physics</topic><topic>Quantum Gases</topic><topic>Quantum Physics</topic><topic>Quenching</topic><topic>Rotational states</topic><topic>Scattering</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lassablière, Lucas</creatorcontrib><creatorcontrib>Quéméner, Goulven</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lassablière, Lucas</au><au>Quéméner, Goulven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Scattering Length of Ultracold Dipolar Molecules</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>121</volume><issue>16</issue><spage>163402</spage><epage>163402</epage><pages>163402-163402</pages><artnum>163402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-range well becomes deeper and can support a certain number of bound states, which in turn bring the value of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an adimensional approach where the molecules are described by a rescaled rotational constant B[over ˜]=B/s_{E_{3}} where s_{E_{3}} is a characteristic dipolar energy. We found that molecules with B[over ˜]&gt;10^{8} are immune to any quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach values above 10^{3}, and that the value and sign of the scattering length can be tuned. The ability to control the molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold molecules, similar to that for ultracold atoms.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30387665</pmid><doi>10.1103/PhysRevLett.121.163402</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9396-7701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-10, Vol.121 (16), p.163402-163402, Article 163402
issn 0031-9007
1079-7114
language eng
recordid cdi_hal_primary_oai_HAL_hal_02078386v1
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Atomic Physics
Circular polarization
Condensed Matter
Entrances
Physics
Quantum Gases
Quantum Physics
Quenching
Rotational states
Scattering
Stability
title Controlling the Scattering Length of Ultracold Dipolar Molecules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Scattering%20Length%20of%20Ultracold%20Dipolar%20Molecules&rft.jtitle=Physical%20review%20letters&rft.au=Lassabli%C3%A8re,%20Lucas&rft.date=2018-10-19&rft.volume=121&rft.issue=16&rft.spage=163402&rft.epage=163402&rft.pages=163402-163402&rft.artnum=163402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.163402&rft_dat=%3Cproquest_hal_p%3E2129537061%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2129517372&rft_id=info:pmid/30387665&rfr_iscdi=true