Loading…
Controlling the Scattering Length of Ultracold Dipolar Molecules
By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is inc...
Saved in:
Published in: | Physical review letters 2018-10, Vol.121 (16), p.163402-163402, Article 163402 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3 |
container_end_page | 163402 |
container_issue | 16 |
container_start_page | 163402 |
container_title | Physical review letters |
container_volume | 121 |
creator | Lassablière, Lucas Quéméner, Goulven |
description | By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-range well becomes deeper and can support a certain number of bound states, which in turn bring the value of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an adimensional approach where the molecules are described by a rescaled rotational constant B[over ˜]=B/s_{E_{3}} where s_{E_{3}} is a characteristic dipolar energy. We found that molecules with B[over ˜]>10^{8} are immune to any quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach values above 10^{3}, and that the value and sign of the scattering length can be tuned. The ability to control the molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold molecules, similar to that for ultracold atoms. |
doi_str_mv | 10.1103/PhysRevLett.121.163402 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02078386v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129537061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3</originalsourceid><addsrcrecordid>eNpdkcFq3DAQhkVoSTZpXyEYcmkP3s5IlmTfErZNUnBpaZuz0GrHWQettZXkQN6-XpyE0tMwwzfD_HyMnSMsEUF8-rF9Sj_psaWcl8hxiUpUwI_YAkE3pUas3rAFgMCyAdAn7DSlBwBArupjdiJA1FopuWCXqzDkGLzvh_sib6n45WzOFA9tS8N93hahK-58jtYFvyk-9_vgbSy-BU9u9JTesbed9YneP9czdnf95ffqtmy_33xdXbWlq3SVS9k0QnaKlHRSoVrbBnilOokWGlevycl6o0HLibNWaW010ZRJOKgEh7UTZ-zjfHdrvdnHfmfjkwm2N7dXrTnMgIOuRa0ecWI_zOw-hj8jpWx2fXLkvR0ojMlw5I0UGtQBvfgPfQhjHKYkM4VaaD5RaqZcDClF6l4_QDAHH-YfH2byYWYf0-L58_lxvaPN69qLAPEXYY-Ghg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129517372</pqid></control><display><type>article</type><title>Controlling the Scattering Length of Ultracold Dipolar Molecules</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Lassablière, Lucas ; Quéméner, Goulven</creator><creatorcontrib>Lassablière, Lucas ; Quéméner, Goulven</creatorcontrib><description>By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-range well becomes deeper and can support a certain number of bound states, which in turn bring the value of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an adimensional approach where the molecules are described by a rescaled rotational constant B[over ˜]=B/s_{E_{3}} where s_{E_{3}} is a characteristic dipolar energy. We found that molecules with B[over ˜]>10^{8} are immune to any quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach values above 10^{3}, and that the value and sign of the scattering length can be tuned. The ability to control the molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold molecules, similar to that for ultracold atoms.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.163402</identifier><identifier>PMID: 30387665</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Atomic Physics ; Circular polarization ; Condensed Matter ; Entrances ; Physics ; Quantum Gases ; Quantum Physics ; Quenching ; Rotational states ; Scattering ; Stability</subject><ispartof>Physical review letters, 2018-10, Vol.121 (16), p.163402-163402, Article 163402</ispartof><rights>Copyright American Physical Society Oct 19, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3</citedby><cites>FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3</cites><orcidid>0000-0001-9396-7701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30387665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02078386$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lassablière, Lucas</creatorcontrib><creatorcontrib>Quéméner, Goulven</creatorcontrib><title>Controlling the Scattering Length of Ultracold Dipolar Molecules</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-range well becomes deeper and can support a certain number of bound states, which in turn bring the value of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an adimensional approach where the molecules are described by a rescaled rotational constant B[over ˜]=B/s_{E_{3}} where s_{E_{3}} is a characteristic dipolar energy. We found that molecules with B[over ˜]>10^{8} are immune to any quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach values above 10^{3}, and that the value and sign of the scattering length can be tuned. The ability to control the molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold molecules, similar to that for ultracold atoms.</description><subject>Atomic Physics</subject><subject>Circular polarization</subject><subject>Condensed Matter</subject><subject>Entrances</subject><subject>Physics</subject><subject>Quantum Gases</subject><subject>Quantum Physics</subject><subject>Quenching</subject><subject>Rotational states</subject><subject>Scattering</subject><subject>Stability</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkcFq3DAQhkVoSTZpXyEYcmkP3s5IlmTfErZNUnBpaZuz0GrHWQettZXkQN6-XpyE0tMwwzfD_HyMnSMsEUF8-rF9Sj_psaWcl8hxiUpUwI_YAkE3pUas3rAFgMCyAdAn7DSlBwBArupjdiJA1FopuWCXqzDkGLzvh_sib6n45WzOFA9tS8N93hahK-58jtYFvyk-9_vgbSy-BU9u9JTesbed9YneP9czdnf95ffqtmy_33xdXbWlq3SVS9k0QnaKlHRSoVrbBnilOokWGlevycl6o0HLibNWaW010ZRJOKgEh7UTZ-zjfHdrvdnHfmfjkwm2N7dXrTnMgIOuRa0ecWI_zOw-hj8jpWx2fXLkvR0ojMlw5I0UGtQBvfgPfQhjHKYkM4VaaD5RaqZcDClF6l4_QDAHH-YfH2byYWYf0-L58_lxvaPN69qLAPEXYY-Ghg</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Lassablière, Lucas</creator><creator>Quéméner, Goulven</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9396-7701</orcidid></search><sort><creationdate>20181019</creationdate><title>Controlling the Scattering Length of Ultracold Dipolar Molecules</title><author>Lassablière, Lucas ; Quéméner, Goulven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic Physics</topic><topic>Circular polarization</topic><topic>Condensed Matter</topic><topic>Entrances</topic><topic>Physics</topic><topic>Quantum Gases</topic><topic>Quantum Physics</topic><topic>Quenching</topic><topic>Rotational states</topic><topic>Scattering</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lassablière, Lucas</creatorcontrib><creatorcontrib>Quéméner, Goulven</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lassablière, Lucas</au><au>Quéméner, Goulven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Scattering Length of Ultracold Dipolar Molecules</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>121</volume><issue>16</issue><spage>163402</spage><epage>163402</epage><pages>163402-163402</pages><artnum>163402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-range well becomes deeper and can support a certain number of bound states, which in turn bring the value of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an adimensional approach where the molecules are described by a rescaled rotational constant B[over ˜]=B/s_{E_{3}} where s_{E_{3}} is a characteristic dipolar energy. We found that molecules with B[over ˜]>10^{8} are immune to any quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach values above 10^{3}, and that the value and sign of the scattering length can be tuned. The ability to control the molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold molecules, similar to that for ultracold atoms.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30387665</pmid><doi>10.1103/PhysRevLett.121.163402</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9396-7701</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2018-10, Vol.121 (16), p.163402-163402, Article 163402 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02078386v1 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Atomic Physics Circular polarization Condensed Matter Entrances Physics Quantum Gases Quantum Physics Quenching Rotational states Scattering Stability |
title | Controlling the Scattering Length of Ultracold Dipolar Molecules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Scattering%20Length%20of%20Ultracold%20Dipolar%20Molecules&rft.jtitle=Physical%20review%20letters&rft.au=Lassabli%C3%A8re,%20Lucas&rft.date=2018-10-19&rft.volume=121&rft.issue=16&rft.spage=163402&rft.epage=163402&rft.pages=163402-163402&rft.artnum=163402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.163402&rft_dat=%3Cproquest_hal_p%3E2129537061%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-59935f6e65c5616ba90246f51a09c8bec58d7075599aa677a7ee1633c04320bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2129517372&rft_id=info:pmid/30387665&rfr_iscdi=true |