Loading…

(Invited) Non-Aqueous Atomic Layer Deposition of SnO2 for Gas Sensing Application

Tin dioxide thin films are grown at low-moderate temperature using a non-hydrolytic atomic layer deposition process. Granular SnO2 thin films are obtained from tin(IV) tetra-butoxide reacting with acetic acid, at temperatures as low as 75 °C. Influence of pulse length of both reactants and of the de...

Full description

Saved in:
Bibliographic Details
Published in:ECS transactions 2018-01, Vol.86 (6), p.55-65
Main Authors: Marichy, Catherine, Silva, Ricardo Manuel, Pinna, Nicola, Willinger, Marc, Donato, Nicola, Neri, Giovanni
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tin dioxide thin films are grown at low-moderate temperature using a non-hydrolytic atomic layer deposition process. Granular SnO2 thin films are obtained from tin(IV) tetra-butoxide reacting with acetic acid, at temperatures as low as 75 °C. Influence of pulse length of both reactants and of the deposition temperature on the saturation is studied. A narrow ALD window is established between 150 and 175 °C with a growth per cycle of 0.07 nm and with a linear growth as a function of the number of cycles. Above 200 °C decomposition of the tin precursor is not negligible. Microstructure and morphology of the as-prepared films as well as the influence of the deposition parameters are investigated using electron and atomic force microscopies. The band gap of the obtained films is determined using UV-visible spectroscopy. Finally the use of the SnO2 coated carbon nanotubes as gas sensing layer is discussed.
ISSN:1938-5862
1938-6737
DOI:10.1149/08606.0055ecst