Loading…
Boundary streaming by internal waves
Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal...
Saved in:
Published in: | Journal of fluid mechanics 2019-01, Vol.858, p.71-90 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3 |
container_end_page | 90 |
container_issue | |
container_start_page | 71 |
container_title | Journal of fluid mechanics |
container_volume | 858 |
creator | Renaud, A. Venaille, A. |
description | Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave–mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals. |
doi_str_mv | 10.1017/jfm.2018.786 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02118124v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_786</cupid><sourcerecordid>2209859086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3</originalsourceid><addsrcrecordid>eNptkEFLwzAUx4MoOKc3P0BBL4KteWnaJsc51AkDL3oOL00yO9Z2Jt3Gvr2tG3rx9B6P3_vz50fINdAEKBQPS1cnjIJICpGfkBHwXMZFzrNTMqKUsRiA0XNyEcKSUkipLEbk9rHdNAb9Pgqdt1hXzSLS-6hqOusbXEU73NpwSc4croK9Os4x-Xh-ep_O4vnby-t0Mo9LznkXZxlYTZ3DIrd5ql2Zp0JqzXWJDoYVHdOpsNbwzDiUxkipHTNoIQOHJh2Tu0PuJ67U2ld130u1WKnZZK6GG2UAAhjfQs_eHNi1b782NnRq2W6GykExRqXIJBV5T90fqNK3IXjrfmOBqsGZ6p2pwZkqfvDkiGOtfWUW9i_134dvdARt0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209859086</pqid></control><display><type>article</type><title>Boundary streaming by internal waves</title><source>Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)</source><creator>Renaud, A. ; Venaille, A.</creator><creatorcontrib>Renaud, A. ; Venaille, A.</creatorcontrib><description>Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave–mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.786</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acoustic streaming ; Boundary conditions ; Boundary layers ; Boussinesq approximation ; Boussinesq equations ; Budgets ; Computational fluid dynamics ; Divergence ; Fluid mechanics ; Fluids ; Gravitational waves ; Interactions ; Internal waves ; JFM Papers ; Laboratories ; Mechanics ; Oceans ; Physics ; Quasi-biennial oscillation ; Reynolds number ; Reynolds stress ; Simulation ; Streaming</subject><ispartof>Journal of fluid mechanics, 2019-01, Vol.858, p.71-90</ispartof><rights>2018 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3</citedby><cites>FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3</cites><orcidid>0000-0002-5803-1753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018007863/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,72703</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02118124$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Renaud, A.</creatorcontrib><creatorcontrib>Venaille, A.</creatorcontrib><title>Boundary streaming by internal waves</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave–mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals.</description><subject>Acoustic streaming</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Budgets</subject><subject>Computational fluid dynamics</subject><subject>Divergence</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Gravitational waves</subject><subject>Interactions</subject><subject>Internal waves</subject><subject>JFM Papers</subject><subject>Laboratories</subject><subject>Mechanics</subject><subject>Oceans</subject><subject>Physics</subject><subject>Quasi-biennial oscillation</subject><subject>Reynolds number</subject><subject>Reynolds stress</subject><subject>Simulation</subject><subject>Streaming</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkEFLwzAUx4MoOKc3P0BBL4KteWnaJsc51AkDL3oOL00yO9Z2Jt3Gvr2tG3rx9B6P3_vz50fINdAEKBQPS1cnjIJICpGfkBHwXMZFzrNTMqKUsRiA0XNyEcKSUkipLEbk9rHdNAb9Pgqdt1hXzSLS-6hqOusbXEU73NpwSc4croK9Os4x-Xh-ep_O4vnby-t0Mo9LznkXZxlYTZ3DIrd5ql2Zp0JqzXWJDoYVHdOpsNbwzDiUxkipHTNoIQOHJh2Tu0PuJ67U2ld130u1WKnZZK6GG2UAAhjfQs_eHNi1b782NnRq2W6GykExRqXIJBV5T90fqNK3IXjrfmOBqsGZ6p2pwZkqfvDkiGOtfWUW9i_134dvdARt0g</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Renaud, A.</creator><creator>Venaille, A.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5803-1753</orcidid></search><sort><creationdate>20190110</creationdate><title>Boundary streaming by internal waves</title><author>Renaud, A. ; Venaille, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic streaming</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Budgets</topic><topic>Computational fluid dynamics</topic><topic>Divergence</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Gravitational waves</topic><topic>Interactions</topic><topic>Internal waves</topic><topic>JFM Papers</topic><topic>Laboratories</topic><topic>Mechanics</topic><topic>Oceans</topic><topic>Physics</topic><topic>Quasi-biennial oscillation</topic><topic>Reynolds number</topic><topic>Reynolds stress</topic><topic>Simulation</topic><topic>Streaming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renaud, A.</creatorcontrib><creatorcontrib>Venaille, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renaud, A.</au><au>Venaille, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary streaming by internal waves</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-01-10</date><risdate>2019</risdate><volume>858</volume><spage>71</spage><epage>90</epage><pages>71-90</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave–mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.786</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5803-1753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-01, Vol.858, p.71-90 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02118124v1 |
source | Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list) |
subjects | Acoustic streaming Boundary conditions Boundary layers Boussinesq approximation Boussinesq equations Budgets Computational fluid dynamics Divergence Fluid mechanics Fluids Gravitational waves Interactions Internal waves JFM Papers Laboratories Mechanics Oceans Physics Quasi-biennial oscillation Reynolds number Reynolds stress Simulation Streaming |
title | Boundary streaming by internal waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20streaming%20by%20internal%20waves&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Renaud,%20A.&rft.date=2019-01-10&rft.volume=858&rft.spage=71&rft.epage=90&rft.pages=71-90&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.786&rft_dat=%3Cproquest_hal_p%3E2209859086%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2209859086&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_786&rfr_iscdi=true |