Loading…

Boundary streaming by internal waves

Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2019-01, Vol.858, p.71-90
Main Authors: Renaud, A., Venaille, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3
cites cdi_FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3
container_end_page 90
container_issue
container_start_page 71
container_title Journal of fluid mechanics
container_volume 858
creator Renaud, A.
Venaille, A.
description Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave–mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals.
doi_str_mv 10.1017/jfm.2018.786
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02118124v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_786</cupid><sourcerecordid>2209859086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3</originalsourceid><addsrcrecordid>eNptkEFLwzAUx4MoOKc3P0BBL4KteWnaJsc51AkDL3oOL00yO9Z2Jt3Gvr2tG3rx9B6P3_vz50fINdAEKBQPS1cnjIJICpGfkBHwXMZFzrNTMqKUsRiA0XNyEcKSUkipLEbk9rHdNAb9Pgqdt1hXzSLS-6hqOusbXEU73NpwSc4croK9Os4x-Xh-ep_O4vnby-t0Mo9LznkXZxlYTZ3DIrd5ql2Zp0JqzXWJDoYVHdOpsNbwzDiUxkipHTNoIQOHJh2Tu0PuJ67U2ld130u1WKnZZK6GG2UAAhjfQs_eHNi1b782NnRq2W6GykExRqXIJBV5T90fqNK3IXjrfmOBqsGZ6p2pwZkqfvDkiGOtfWUW9i_134dvdARt0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209859086</pqid></control><display><type>article</type><title>Boundary streaming by internal waves</title><source>Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)</source><creator>Renaud, A. ; Venaille, A.</creator><creatorcontrib>Renaud, A. ; Venaille, A.</creatorcontrib><description>Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave–mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.786</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acoustic streaming ; Boundary conditions ; Boundary layers ; Boussinesq approximation ; Boussinesq equations ; Budgets ; Computational fluid dynamics ; Divergence ; Fluid mechanics ; Fluids ; Gravitational waves ; Interactions ; Internal waves ; JFM Papers ; Laboratories ; Mechanics ; Oceans ; Physics ; Quasi-biennial oscillation ; Reynolds number ; Reynolds stress ; Simulation ; Streaming</subject><ispartof>Journal of fluid mechanics, 2019-01, Vol.858, p.71-90</ispartof><rights>2018 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3</citedby><cites>FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3</cites><orcidid>0000-0002-5803-1753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018007863/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,72703</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02118124$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Renaud, A.</creatorcontrib><creatorcontrib>Venaille, A.</creatorcontrib><title>Boundary streaming by internal waves</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave–mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals.</description><subject>Acoustic streaming</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Budgets</subject><subject>Computational fluid dynamics</subject><subject>Divergence</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Gravitational waves</subject><subject>Interactions</subject><subject>Internal waves</subject><subject>JFM Papers</subject><subject>Laboratories</subject><subject>Mechanics</subject><subject>Oceans</subject><subject>Physics</subject><subject>Quasi-biennial oscillation</subject><subject>Reynolds number</subject><subject>Reynolds stress</subject><subject>Simulation</subject><subject>Streaming</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkEFLwzAUx4MoOKc3P0BBL4KteWnaJsc51AkDL3oOL00yO9Z2Jt3Gvr2tG3rx9B6P3_vz50fINdAEKBQPS1cnjIJICpGfkBHwXMZFzrNTMqKUsRiA0XNyEcKSUkipLEbk9rHdNAb9Pgqdt1hXzSLS-6hqOusbXEU73NpwSc4croK9Os4x-Xh-ep_O4vnby-t0Mo9LznkXZxlYTZ3DIrd5ql2Zp0JqzXWJDoYVHdOpsNbwzDiUxkipHTNoIQOHJh2Tu0PuJ67U2ld130u1WKnZZK6GG2UAAhjfQs_eHNi1b782NnRq2W6GykExRqXIJBV5T90fqNK3IXjrfmOBqsGZ6p2pwZkqfvDkiGOtfWUW9i_134dvdARt0g</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Renaud, A.</creator><creator>Venaille, A.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5803-1753</orcidid></search><sort><creationdate>20190110</creationdate><title>Boundary streaming by internal waves</title><author>Renaud, A. ; Venaille, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic streaming</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Budgets</topic><topic>Computational fluid dynamics</topic><topic>Divergence</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Gravitational waves</topic><topic>Interactions</topic><topic>Internal waves</topic><topic>JFM Papers</topic><topic>Laboratories</topic><topic>Mechanics</topic><topic>Oceans</topic><topic>Physics</topic><topic>Quasi-biennial oscillation</topic><topic>Reynolds number</topic><topic>Reynolds stress</topic><topic>Simulation</topic><topic>Streaming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renaud, A.</creatorcontrib><creatorcontrib>Venaille, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renaud, A.</au><au>Venaille, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary streaming by internal waves</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-01-10</date><risdate>2019</risdate><volume>858</volume><spage>71</spage><epage>90</epage><pages>71-90</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel–Kramers–Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave–mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.786</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5803-1753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-01, Vol.858, p.71-90
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_hal_02118124v1
source Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)
subjects Acoustic streaming
Boundary conditions
Boundary layers
Boussinesq approximation
Boussinesq equations
Budgets
Computational fluid dynamics
Divergence
Fluid mechanics
Fluids
Gravitational waves
Interactions
Internal waves
JFM Papers
Laboratories
Mechanics
Oceans
Physics
Quasi-biennial oscillation
Reynolds number
Reynolds stress
Simulation
Streaming
title Boundary streaming by internal waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20streaming%20by%20internal%20waves&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Renaud,%20A.&rft.date=2019-01-10&rft.volume=858&rft.spage=71&rft.epage=90&rft.pages=71-90&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.786&rft_dat=%3Cproquest_hal_p%3E2209859086%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-551eb0ffa76e63bfc6389bb4bcaf1389baf2b38eed45dfa9dd99bf2dae151fad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2209859086&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_786&rfr_iscdi=true