Loading…

Mechanistically-informed damage detection using dynamic measurements: Extended constitutive relation error

Model-based damage detection entails the calibration of damage-indicative parameters in a physics-based computer model of an undamaged structural system against measurements collected from its damaged counterpart. The approach relies on the premise that changes identified in the damage-indicative pa...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2017-02, Vol.85, p.312-328
Main Authors: Hu, X., Prabhu, S., Atamturktur, S., Cogan, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Model-based damage detection entails the calibration of damage-indicative parameters in a physics-based computer model of an undamaged structural system against measurements collected from its damaged counterpart. The approach relies on the premise that changes identified in the damage-indicative parameters during calibration reveal the structural damage in the system. In model-based damage detection, model calibration has traditionally been treated as a process, solely operating on the model output without incorporating available knowledge regarding the underlying mechanistic behavior of the structural system. In this paper, the authors propose a novel approach for model-based damage detection by implementing the Extended Constitutive Relation Error (ECRE), a method developed for error localization in finite element models. The ECRE method was originally conceived to identify discrepancies between experimental measurements and model predictions for a structure in a given healthy state. Implementing ECRE for damage detection leads to the evaluation of a structure in varying healthy states and determination of discrepancy between model predictions and experiments due to damage. The authors developed an ECRE-based damage detection procedure in which the model error and structural damage are identified in two distinct steps and demonstrate feasibility of the procedure in identifying the presence, location and relative severity of damage on a scaled two-story steel frame for damage scenarios of varying type and severity. •ECRE-based damage detection incorporates underlying mechanistic behavior of system.•The two-step damage detection procedure is demonstrated on a controlled example.•Two-step ECRE-based damage detection is applied on a frame structure with damage.•The method first obtains model error and then calculates the damage indicator.
ISSN:0888-3270
1096-1216
DOI:10.1016/j.ymssp.2016.08.013