Loading…

Flexible SVBRDF Capture with a Multi‐Image Deep Network

Empowered by deep learning, recent methods for material capture can estimate a spatially‐varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization‐based approaches. However, a single image is...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum 2019-07, Vol.38 (4), p.1-13
Main Authors: Deschaintre, Valentin, Aittala, Miika, Durand, Fredo, Drettakis, George, Bousseau, Adrien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Empowered by deep learning, recent methods for material capture can estimate a spatially‐varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization‐based approaches. However, a single image is often simply not enough to observe the rich appearance of real‐world materials. We present a deep‐learning method capable of estimating material appearance from a variable number of uncalibrated and unordered pictures captured with a handheld camera and flash. Thanks to an order‐independent fusing layer, this architecture extracts the most useful information from each picture, while benefiting from strong priors learned from data. The method can handle both view and light direction variation without calibration. We show how our method improves its prediction with the number of input pictures, and reaches high quality reconstructions with as little as 1 to 10 images ‐ a sweet spot between existing single‐image and complex multi‐image approaches.
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13765