Loading…
Flexible SVBRDF Capture with a Multi‐Image Deep Network
Empowered by deep learning, recent methods for material capture can estimate a spatially‐varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization‐based approaches. However, a single image is...
Saved in:
Published in: | Computer graphics forum 2019-07, Vol.38 (4), p.1-13 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3665-41d5ae8025cbf79822b96efa558c8c1360e9f68707936c82a0066ce776c23cf43 |
---|---|
cites | cdi_FETCH-LOGICAL-c3665-41d5ae8025cbf79822b96efa558c8c1360e9f68707936c82a0066ce776c23cf43 |
container_end_page | 13 |
container_issue | 4 |
container_start_page | 1 |
container_title | Computer graphics forum |
container_volume | 38 |
creator | Deschaintre, Valentin Aittala, Miika Durand, Fredo Drettakis, George Bousseau, Adrien |
description | Empowered by deep learning, recent methods for material capture can estimate a spatially‐varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization‐based approaches. However, a single image is often simply not enough to observe the rich appearance of real‐world materials. We present a deep‐learning method capable of estimating material appearance from a variable number of uncalibrated and unordered pictures captured with a handheld camera and flash. Thanks to an order‐independent fusing layer, this architecture extracts the most useful information from each picture, while benefiting from strong priors learned from data. The method can handle both view and light direction variation without calibration. We show how our method improves its prediction with the number of input pictures, and reaches high quality reconstructions with as little as 1 to 10 images ‐ a sweet spot between existing single‐image and complex multi‐image approaches. |
doi_str_mv | 10.1111/cgf.13765 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02164993v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266288541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3665-41d5ae8025cbf79822b96efa558c8c1360e9f68707936c82a0066ce776c23cf43</originalsourceid><addsrcrecordid>eNp1kM1OwkAQxzdGExE9-AZNPHko7G67X0csFEhQE7-um2WdQrHYum1Fbj6Cz-iTWKzRk3OZyeQ3v0z-CJ0S3CNN9e0i6ZFAcLaHOiTkwpecqX3UwaSZBWbsEB2V5QpjHDZQB6k4g7d0noF3-3BxM4y9yBRV7cDbpNXSM95lnVXp5_vHdG0W4A0BCu8Kqk3uno7RQWKyEk5-ehfdx6O7aOLPrsfTaDDzbcA580PyyAxITJmdJ0JJSueKQ2IYk1ZaEnAMKuFSYKECbiU1GHNuQQhuaWCTMOii89a7NJkuXLo2bqtzk-rJYKZ3O0wJD5UKXmnDnrVs4fKXGspKr_LaPTfvaUo5p1KykPwZrcvL0kHyqyVY71LUTYr6O8WG7bfsJs1g-z-oo3HcXnwBlCxwVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266288541</pqid></control><display><type>article</type><title>Flexible SVBRDF Capture with a Multi‐Image Deep Network</title><source>Business Source Ultimate</source><source>EBSCOhost Art & Architecture Source</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Deschaintre, Valentin ; Aittala, Miika ; Durand, Fredo ; Drettakis, George ; Bousseau, Adrien</creator><creatorcontrib>Deschaintre, Valentin ; Aittala, Miika ; Durand, Fredo ; Drettakis, George ; Bousseau, Adrien</creatorcontrib><description>Empowered by deep learning, recent methods for material capture can estimate a spatially‐varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization‐based approaches. However, a single image is often simply not enough to observe the rich appearance of real‐world materials. We present a deep‐learning method capable of estimating material appearance from a variable number of uncalibrated and unordered pictures captured with a handheld camera and flash. Thanks to an order‐independent fusing layer, this architecture extracts the most useful information from each picture, while benefiting from strong priors learned from data. The method can handle both view and light direction variation without calibration. We show how our method improves its prediction with the number of input pictures, and reaches high quality reconstructions with as little as 1 to 10 images ‐ a sweet spot between existing single‐image and complex multi‐image approaches.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.13765</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Appearance capture ; CCS Concepts ; Computer graphics ; Computer Science ; Computing methodologies → Reflectance modeling ; Deep learning ; Image Processing ; Machine learning ; Material capture ; Optimization ; Pictures ; Reflectance ; SVBRDF</subject><ispartof>Computer graphics forum, 2019-07, Vol.38 (4), p.1-13</ispartof><rights>2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.</rights><rights>2019 The Eurographics Association and John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3665-41d5ae8025cbf79822b96efa558c8c1360e9f68707936c82a0066ce776c23cf43</citedby><cites>FETCH-LOGICAL-c3665-41d5ae8025cbf79822b96efa558c8c1360e9f68707936c82a0066ce776c23cf43</cites><orcidid>0000-0002-8003-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02164993$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Deschaintre, Valentin</creatorcontrib><creatorcontrib>Aittala, Miika</creatorcontrib><creatorcontrib>Durand, Fredo</creatorcontrib><creatorcontrib>Drettakis, George</creatorcontrib><creatorcontrib>Bousseau, Adrien</creatorcontrib><title>Flexible SVBRDF Capture with a Multi‐Image Deep Network</title><title>Computer graphics forum</title><description>Empowered by deep learning, recent methods for material capture can estimate a spatially‐varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization‐based approaches. However, a single image is often simply not enough to observe the rich appearance of real‐world materials. We present a deep‐learning method capable of estimating material appearance from a variable number of uncalibrated and unordered pictures captured with a handheld camera and flash. Thanks to an order‐independent fusing layer, this architecture extracts the most useful information from each picture, while benefiting from strong priors learned from data. The method can handle both view and light direction variation without calibration. We show how our method improves its prediction with the number of input pictures, and reaches high quality reconstructions with as little as 1 to 10 images ‐ a sweet spot between existing single‐image and complex multi‐image approaches.</description><subject>Appearance capture</subject><subject>CCS Concepts</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Computing methodologies → Reflectance modeling</subject><subject>Deep learning</subject><subject>Image Processing</subject><subject>Machine learning</subject><subject>Material capture</subject><subject>Optimization</subject><subject>Pictures</subject><subject>Reflectance</subject><subject>SVBRDF</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwkAQxzdGExE9-AZNPHko7G67X0csFEhQE7-um2WdQrHYum1Fbj6Cz-iTWKzRk3OZyeQ3v0z-CJ0S3CNN9e0i6ZFAcLaHOiTkwpecqX3UwaSZBWbsEB2V5QpjHDZQB6k4g7d0noF3-3BxM4y9yBRV7cDbpNXSM95lnVXp5_vHdG0W4A0BCu8Kqk3uno7RQWKyEk5-ehfdx6O7aOLPrsfTaDDzbcA580PyyAxITJmdJ0JJSueKQ2IYk1ZaEnAMKuFSYKECbiU1GHNuQQhuaWCTMOii89a7NJkuXLo2bqtzk-rJYKZ3O0wJD5UKXmnDnrVs4fKXGspKr_LaPTfvaUo5p1KykPwZrcvL0kHyqyVY71LUTYr6O8WG7bfsJs1g-z-oo3HcXnwBlCxwVw</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Deschaintre, Valentin</creator><creator>Aittala, Miika</creator><creator>Durand, Fredo</creator><creator>Drettakis, George</creator><creator>Bousseau, Adrien</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid></search><sort><creationdate>201907</creationdate><title>Flexible SVBRDF Capture with a Multi‐Image Deep Network</title><author>Deschaintre, Valentin ; Aittala, Miika ; Durand, Fredo ; Drettakis, George ; Bousseau, Adrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3665-41d5ae8025cbf79822b96efa558c8c1360e9f68707936c82a0066ce776c23cf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Appearance capture</topic><topic>CCS Concepts</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Computing methodologies → Reflectance modeling</topic><topic>Deep learning</topic><topic>Image Processing</topic><topic>Machine learning</topic><topic>Material capture</topic><topic>Optimization</topic><topic>Pictures</topic><topic>Reflectance</topic><topic>SVBRDF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deschaintre, Valentin</creatorcontrib><creatorcontrib>Aittala, Miika</creatorcontrib><creatorcontrib>Durand, Fredo</creatorcontrib><creatorcontrib>Drettakis, George</creatorcontrib><creatorcontrib>Bousseau, Adrien</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deschaintre, Valentin</au><au>Aittala, Miika</au><au>Durand, Fredo</au><au>Drettakis, George</au><au>Bousseau, Adrien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible SVBRDF Capture with a Multi‐Image Deep Network</atitle><jtitle>Computer graphics forum</jtitle><date>2019-07</date><risdate>2019</risdate><volume>38</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Empowered by deep learning, recent methods for material capture can estimate a spatially‐varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization‐based approaches. However, a single image is often simply not enough to observe the rich appearance of real‐world materials. We present a deep‐learning method capable of estimating material appearance from a variable number of uncalibrated and unordered pictures captured with a handheld camera and flash. Thanks to an order‐independent fusing layer, this architecture extracts the most useful information from each picture, while benefiting from strong priors learned from data. The method can handle both view and light direction variation without calibration. We show how our method improves its prediction with the number of input pictures, and reaches high quality reconstructions with as little as 1 to 10 images ‐ a sweet spot between existing single‐image and complex multi‐image approaches.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.13765</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2019-07, Vol.38 (4), p.1-13 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02164993v2 |
source | Business Source Ultimate; EBSCOhost Art & Architecture Source; Wiley-Blackwell Read & Publish Collection |
subjects | Appearance capture CCS Concepts Computer graphics Computer Science Computing methodologies → Reflectance modeling Deep learning Image Processing Machine learning Material capture Optimization Pictures Reflectance SVBRDF |
title | Flexible SVBRDF Capture with a Multi‐Image Deep Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20SVBRDF%20Capture%20with%20a%20Multi%E2%80%90Image%20Deep%20Network&rft.jtitle=Computer%20graphics%20forum&rft.au=Deschaintre,%20Valentin&rft.date=2019-07&rft.volume=38&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.13765&rft_dat=%3Cproquest_hal_p%3E2266288541%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3665-41d5ae8025cbf79822b96efa558c8c1360e9f68707936c82a0066ce776c23cf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2266288541&rft_id=info:pmid/&rfr_iscdi=true |