Loading…

Virtual cathode induced in Rb2Ti2O5 solid electrolyte

Rb2Ti2O5 (RTO) has recently been demonstrated to be a solid electrolyte, producing colossal capacitance when interfaced with metals. In order to understand the mechanisms leading to such colossal equivalent permittivity (up to four orders of magnitude above state-of-the-art values), the charge distr...

Full description

Saved in:
Bibliographic Details
Published in:Solid state ionics 2019-05, Vol.333, p.72-75
Main Authors: De Sousa Coutinho, Sofia, Federicci, Rémi, Holé, Stéphane, Leridon, Brigitte
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-e6b6b2b8fea012c1bc8126b9252945d55ec2451ec6e11a00945127c77b217c8b3
cites cdi_FETCH-LOGICAL-c371t-e6b6b2b8fea012c1bc8126b9252945d55ec2451ec6e11a00945127c77b217c8b3
container_end_page 75
container_issue
container_start_page 72
container_title Solid state ionics
container_volume 333
creator De Sousa Coutinho, Sofia
Federicci, Rémi
Holé, Stéphane
Leridon, Brigitte
description Rb2Ti2O5 (RTO) has recently been demonstrated to be a solid electrolyte, producing colossal capacitance when interfaced with metals. In order to understand the mechanisms leading to such colossal equivalent permittivity (up to four orders of magnitude above state-of-the-art values), the charge distribution in RTO is a key feature to be investigated. In the present article, this charge distribution is probed using the pressure-wave-propagation method, in devices made of RTO single crystals or polycrystals sandwiched between two metallic electrodes. Remarkably enough, in both types of samples, negative charges are found to accumulate inside RTO, near the anode, while the electric field near the cathode remains zero. This proves that the ionic carriers are majoritarily negatively charged and provides an explanation for the colossal capacitance. The latter takes place only at the anode while the cathode is virtually shifted into the solid electrolyte. •Pressure pulse propagation measurementsshow that negative charges accumulate near the anode in Rb2Ti2O5 ion conductor.•The charge distribution is found to be qualitatively similar in single crystals and ceramics made of Rb2Ti2O5.•Rb2Ti2O5 experiences a transition from insulator to metal near the cathode, leading to the creation of a virtual cathode.•This effect is responsible for the colossal density of charge and colossal equivalent permittivity found in this material.
doi_str_mv 10.1016/j.ssi.2019.01.012
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02169296v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273818311135</els_id><sourcerecordid>2222922437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-e6b6b2b8fea012c1bc8126b9252945d55ec2451ec6e11a00945127c77b217c8b3</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKcfwLeCTz605q5r0uLTGOqEwUCmr6FJbyylLjNpB357Myo-Gg4Ojt__uPwYuwWeAQfx0GYh2Aw5VBmHWHjGJlBKTKUoq3M2iYxMUeblJbsKoeWci7wUE1Z8WN8PdZeYut-5hhK7bwZDTezJm8aNxXWRBNfZJqGOTO9d993TNbvY1l2gm98-Ze_PT5vFMl2tX14X81Vqcgl9SkILjbrcUh0vMqBNCSh0hQVWs6IpCjI4K4CMIICa8zgElEZKjSBNqfMpux_37upOHbz9rP23crVVy_lKnWYcQVRYiSNE9m5kD959DRR61brB7-N5CuOrEGe5jBSMlPEuBE_bv7XA1cmkalU0qU4mFYdYGDOPY4biV4-WvArG0j5asj4qUY2z_6R_ALWMeHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222922437</pqid></control><display><type>article</type><title>Virtual cathode induced in Rb2Ti2O5 solid electrolyte</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>De Sousa Coutinho, Sofia ; Federicci, Rémi ; Holé, Stéphane ; Leridon, Brigitte</creator><creatorcontrib>De Sousa Coutinho, Sofia ; Federicci, Rémi ; Holé, Stéphane ; Leridon, Brigitte</creatorcontrib><description>Rb2Ti2O5 (RTO) has recently been demonstrated to be a solid electrolyte, producing colossal capacitance when interfaced with metals. In order to understand the mechanisms leading to such colossal equivalent permittivity (up to four orders of magnitude above state-of-the-art values), the charge distribution in RTO is a key feature to be investigated. In the present article, this charge distribution is probed using the pressure-wave-propagation method, in devices made of RTO single crystals or polycrystals sandwiched between two metallic electrodes. Remarkably enough, in both types of samples, negative charges are found to accumulate inside RTO, near the anode, while the electric field near the cathode remains zero. This proves that the ionic carriers are majoritarily negatively charged and provides an explanation for the colossal capacitance. The latter takes place only at the anode while the cathode is virtually shifted into the solid electrolyte. •Pressure pulse propagation measurementsshow that negative charges accumulate near the anode in Rb2Ti2O5 ion conductor.•The charge distribution is found to be qualitatively similar in single crystals and ceramics made of Rb2Ti2O5.•Rb2Ti2O5 experiences a transition from insulator to metal near the cathode, leading to the creation of a virtual cathode.•This effect is responsible for the colossal density of charge and colossal equivalent permittivity found in this material.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2019.01.012</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodes ; Capacitance ; Cathodes ; Charge distribution ; Chemical Sciences ; Condensed Matter ; Electric fields ; Electric properties ; Electrodes ; Electrolytes ; Ion conductor ; Materials Science ; Perovskite ; Physics ; Polycrystals ; Rubidium titanate ; Single crystals ; Solid electrolyte ; Solid electrolytes ; Stress concentration ; Strongly Correlated Electrons ; Supercapacitor material ; Superconductivity ; Virtual cathode ; Wave propagation</subject><ispartof>Solid state ionics, 2019-05, Vol.333, p.72-75</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-e6b6b2b8fea012c1bc8126b9252945d55ec2451ec6e11a00945127c77b217c8b3</citedby><cites>FETCH-LOGICAL-c371t-e6b6b2b8fea012c1bc8126b9252945d55ec2451ec6e11a00945127c77b217c8b3</cites><orcidid>0000-0002-8921-1714 ; 0000-0002-0996-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02169296$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>De Sousa Coutinho, Sofia</creatorcontrib><creatorcontrib>Federicci, Rémi</creatorcontrib><creatorcontrib>Holé, Stéphane</creatorcontrib><creatorcontrib>Leridon, Brigitte</creatorcontrib><title>Virtual cathode induced in Rb2Ti2O5 solid electrolyte</title><title>Solid state ionics</title><description>Rb2Ti2O5 (RTO) has recently been demonstrated to be a solid electrolyte, producing colossal capacitance when interfaced with metals. In order to understand the mechanisms leading to such colossal equivalent permittivity (up to four orders of magnitude above state-of-the-art values), the charge distribution in RTO is a key feature to be investigated. In the present article, this charge distribution is probed using the pressure-wave-propagation method, in devices made of RTO single crystals or polycrystals sandwiched between two metallic electrodes. Remarkably enough, in both types of samples, negative charges are found to accumulate inside RTO, near the anode, while the electric field near the cathode remains zero. This proves that the ionic carriers are majoritarily negatively charged and provides an explanation for the colossal capacitance. The latter takes place only at the anode while the cathode is virtually shifted into the solid electrolyte. •Pressure pulse propagation measurementsshow that negative charges accumulate near the anode in Rb2Ti2O5 ion conductor.•The charge distribution is found to be qualitatively similar in single crystals and ceramics made of Rb2Ti2O5.•Rb2Ti2O5 experiences a transition from insulator to metal near the cathode, leading to the creation of a virtual cathode.•This effect is responsible for the colossal density of charge and colossal equivalent permittivity found in this material.</description><subject>Anodes</subject><subject>Capacitance</subject><subject>Cathodes</subject><subject>Charge distribution</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Ion conductor</subject><subject>Materials Science</subject><subject>Perovskite</subject><subject>Physics</subject><subject>Polycrystals</subject><subject>Rubidium titanate</subject><subject>Single crystals</subject><subject>Solid electrolyte</subject><subject>Solid electrolytes</subject><subject>Stress concentration</subject><subject>Strongly Correlated Electrons</subject><subject>Supercapacitor material</subject><subject>Superconductivity</subject><subject>Virtual cathode</subject><subject>Wave propagation</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOKcfwLeCTz605q5r0uLTGOqEwUCmr6FJbyylLjNpB357Myo-Gg4Ojt__uPwYuwWeAQfx0GYh2Aw5VBmHWHjGJlBKTKUoq3M2iYxMUeblJbsKoeWci7wUE1Z8WN8PdZeYut-5hhK7bwZDTezJm8aNxXWRBNfZJqGOTO9d993TNbvY1l2gm98-Ze_PT5vFMl2tX14X81Vqcgl9SkILjbrcUh0vMqBNCSh0hQVWs6IpCjI4K4CMIICa8zgElEZKjSBNqfMpux_37upOHbz9rP23crVVy_lKnWYcQVRYiSNE9m5kD959DRR61brB7-N5CuOrEGe5jBSMlPEuBE_bv7XA1cmkalU0qU4mFYdYGDOPY4biV4-WvArG0j5asj4qUY2z_6R_ALWMeHM</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>De Sousa Coutinho, Sofia</creator><creator>Federicci, Rémi</creator><creator>Holé, Stéphane</creator><creator>Leridon, Brigitte</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8921-1714</orcidid><orcidid>https://orcid.org/0000-0002-0996-352X</orcidid></search><sort><creationdate>20190501</creationdate><title>Virtual cathode induced in Rb2Ti2O5 solid electrolyte</title><author>De Sousa Coutinho, Sofia ; Federicci, Rémi ; Holé, Stéphane ; Leridon, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-e6b6b2b8fea012c1bc8126b9252945d55ec2451ec6e11a00945127c77b217c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Capacitance</topic><topic>Cathodes</topic><topic>Charge distribution</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Ion conductor</topic><topic>Materials Science</topic><topic>Perovskite</topic><topic>Physics</topic><topic>Polycrystals</topic><topic>Rubidium titanate</topic><topic>Single crystals</topic><topic>Solid electrolyte</topic><topic>Solid electrolytes</topic><topic>Stress concentration</topic><topic>Strongly Correlated Electrons</topic><topic>Supercapacitor material</topic><topic>Superconductivity</topic><topic>Virtual cathode</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Sousa Coutinho, Sofia</creatorcontrib><creatorcontrib>Federicci, Rémi</creatorcontrib><creatorcontrib>Holé, Stéphane</creatorcontrib><creatorcontrib>Leridon, Brigitte</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Sousa Coutinho, Sofia</au><au>Federicci, Rémi</au><au>Holé, Stéphane</au><au>Leridon, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual cathode induced in Rb2Ti2O5 solid electrolyte</atitle><jtitle>Solid state ionics</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>333</volume><spage>72</spage><epage>75</epage><pages>72-75</pages><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>Rb2Ti2O5 (RTO) has recently been demonstrated to be a solid electrolyte, producing colossal capacitance when interfaced with metals. In order to understand the mechanisms leading to such colossal equivalent permittivity (up to four orders of magnitude above state-of-the-art values), the charge distribution in RTO is a key feature to be investigated. In the present article, this charge distribution is probed using the pressure-wave-propagation method, in devices made of RTO single crystals or polycrystals sandwiched between two metallic electrodes. Remarkably enough, in both types of samples, negative charges are found to accumulate inside RTO, near the anode, while the electric field near the cathode remains zero. This proves that the ionic carriers are majoritarily negatively charged and provides an explanation for the colossal capacitance. The latter takes place only at the anode while the cathode is virtually shifted into the solid electrolyte. •Pressure pulse propagation measurementsshow that negative charges accumulate near the anode in Rb2Ti2O5 ion conductor.•The charge distribution is found to be qualitatively similar in single crystals and ceramics made of Rb2Ti2O5.•Rb2Ti2O5 experiences a transition from insulator to metal near the cathode, leading to the creation of a virtual cathode.•This effect is responsible for the colossal density of charge and colossal equivalent permittivity found in this material.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2019.01.012</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8921-1714</orcidid><orcidid>https://orcid.org/0000-0002-0996-352X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2019-05, Vol.333, p.72-75
issn 0167-2738
1872-7689
language eng
recordid cdi_hal_primary_oai_HAL_hal_02169296v1
source ScienceDirect Freedom Collection 2022-2024
subjects Anodes
Capacitance
Cathodes
Charge distribution
Chemical Sciences
Condensed Matter
Electric fields
Electric properties
Electrodes
Electrolytes
Ion conductor
Materials Science
Perovskite
Physics
Polycrystals
Rubidium titanate
Single crystals
Solid electrolyte
Solid electrolytes
Stress concentration
Strongly Correlated Electrons
Supercapacitor material
Superconductivity
Virtual cathode
Wave propagation
title Virtual cathode induced in Rb2Ti2O5 solid electrolyte
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20cathode%20induced%20in%20Rb2Ti2O5%20solid%20electrolyte&rft.jtitle=Solid%20state%20ionics&rft.au=De%20Sousa%20Coutinho,%20Sofia&rft.date=2019-05-01&rft.volume=333&rft.spage=72&rft.epage=75&rft.pages=72-75&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2019.01.012&rft_dat=%3Cproquest_hal_p%3E2222922437%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-e6b6b2b8fea012c1bc8126b9252945d55ec2451ec6e11a00945127c77b217c8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2222922437&rft_id=info:pmid/&rfr_iscdi=true