Loading…

Millennial‐ to Orbital‐Scale Responses of Western Equatorial Atlantic Thermocline Depth to Changes in the Trade Wind System Since the Last Interglacial

Surface ocean circulation in the western equatorial Atlantic is mainly wind driven and plays a major role for the transport of warm waters to the North Atlantic. Past changes in the strength and direction of the trade winds are well documented, but the response of the western equatorial Atlantic cir...

Full description

Saved in:
Bibliographic Details
Published in:Paleoceanography and Paleoclimatology 2018-12, Vol.33 (12), p.1490-1507
Main Authors: Venancio, I. M., Mulitza, S., Govin, A., Santos, T. P., Lessa, D. O., Albuquerque, A. L. S., Chiessi, C. M., Tiedemann, R., Vahlenkamp, M., Bickert, T., Schulz, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3172-9b19158a8e96f5f6f80657510262e98786783d9e9d4c2a9bc6edddcd79ff8d343
cites cdi_FETCH-LOGICAL-a3172-9b19158a8e96f5f6f80657510262e98786783d9e9d4c2a9bc6edddcd79ff8d343
container_end_page 1507
container_issue 12
container_start_page 1490
container_title Paleoceanography and Paleoclimatology
container_volume 33
creator Venancio, I. M.
Mulitza, S.
Govin, A.
Santos, T. P.
Lessa, D. O.
Albuquerque, A. L. S.
Chiessi, C. M.
Tiedemann, R.
Vahlenkamp, M.
Bickert, T.
Schulz, M.
description Surface ocean circulation in the western equatorial Atlantic is mainly wind driven and plays a major role for the transport of warm waters to the North Atlantic. Past changes in the strength and direction of the trade winds are well documented, but the response of the western equatorial Atlantic circulation and water column structure to these changes is unclear. Here we used the difference between the stable isotopic oxygen composition of two species of planktonic foraminifera (Globigerinoides ruber white and Neogloboquadrina dutertrei) from two sediment cores collected off northeastern Brazil to investigate millennial‐ and orbital‐scale changes in upper ocean stratification since the Last Interglacial. Our records indicate enhanced upper ocean stratification during several Heinrich stadials, partly due to a shoaling of the thermocline, which was linked to a decrease in the strength of southeast trades winds. In addition, we show that a decrease in wind zonality induced by increases in Northern Hemisphere low‐latitude summer insolation causes a shoaling of the thermocline in the western equatorial Atlantic. These ocean‐atmosphere changes contributed to a reduction in the cross‐equatorial transport of warm waters, particularly during Heinrich stadials and Marine Isotope Stage 4. Key Points Changes in western equatorial Atlantic thermocline depth were recorded on millennial and orbital time scales Shoaling of the thermocline during Heinrich stadials was associated with weak southeast trade winds Shoaling of the thermocline during periods of low‐latitude boreal summer insolation maxima occurred due to decreased wind zonality
doi_str_mv 10.1029/2018PA003437
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02181008v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299409999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3172-9b19158a8e96f5f6f80657510262e98786783d9e9d4c2a9bc6edddcd79ff8d343</originalsourceid><addsrcrecordid>eNp9kctOGzEUhkdVKxVRdjyApa4qNcX23OzlKIWCNCioCWJpOfYZxsixg-2AsuMR2PN2fRIcUqGu6o1v3_lk_6cojgn-QTDlJxQTdtVhXFZl-6E4oHVLJ1VN64_va9J-Lo5ivMMYE15WjPKD4uXSWAvOGWn_PD2j5NEsLE16282VtIB-Q1x7FyEiP6AbiAmCQ6f3G5l8yFWoS1a6ZBRajBBWXlnjAP2EdRp3tuko3W2uNQ6lEdAiSA3oxjiN5tusWqG5cQre7noZE7pw2X9rpcrqL8WnQdoIR3_nw-L67HQxPZ_0s18X066fyJLkj_El4aRmkgFvhnpoBoabuq1zKA0FzlrWtKzUHLiuFJV8qRrQWivd8mFgOsd1WHzbe0dpxTqYlQxb4aUR510vdmeYEkYwZg8ks1_37Dr4-01OQ9z5TXD5eYJSzivM88jU9z2lgo8xwPCuJVjsuiX-7VbGyz3-aCxs_8uKq66fUdwwWr4CIk-X4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299409999</pqid></control><display><type>article</type><title>Millennial‐ to Orbital‐Scale Responses of Western Equatorial Atlantic Thermocline Depth to Changes in the Trade Wind System Since the Last Interglacial</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Venancio, I. M. ; Mulitza, S. ; Govin, A. ; Santos, T. P. ; Lessa, D. O. ; Albuquerque, A. L. S. ; Chiessi, C. M. ; Tiedemann, R. ; Vahlenkamp, M. ; Bickert, T. ; Schulz, M.</creator><creatorcontrib>Venancio, I. M. ; Mulitza, S. ; Govin, A. ; Santos, T. P. ; Lessa, D. O. ; Albuquerque, A. L. S. ; Chiessi, C. M. ; Tiedemann, R. ; Vahlenkamp, M. ; Bickert, T. ; Schulz, M.</creatorcontrib><description>Surface ocean circulation in the western equatorial Atlantic is mainly wind driven and plays a major role for the transport of warm waters to the North Atlantic. Past changes in the strength and direction of the trade winds are well documented, but the response of the western equatorial Atlantic circulation and water column structure to these changes is unclear. Here we used the difference between the stable isotopic oxygen composition of two species of planktonic foraminifera (Globigerinoides ruber white and Neogloboquadrina dutertrei) from two sediment cores collected off northeastern Brazil to investigate millennial‐ and orbital‐scale changes in upper ocean stratification since the Last Interglacial. Our records indicate enhanced upper ocean stratification during several Heinrich stadials, partly due to a shoaling of the thermocline, which was linked to a decrease in the strength of southeast trades winds. In addition, we show that a decrease in wind zonality induced by increases in Northern Hemisphere low‐latitude summer insolation causes a shoaling of the thermocline in the western equatorial Atlantic. These ocean‐atmosphere changes contributed to a reduction in the cross‐equatorial transport of warm waters, particularly during Heinrich stadials and Marine Isotope Stage 4. Key Points Changes in western equatorial Atlantic thermocline depth were recorded on millennial and orbital time scales Shoaling of the thermocline during Heinrich stadials was associated with weak southeast trade winds Shoaling of the thermocline during periods of low‐latitude boreal summer insolation maxima occurred due to decreased wind zonality</description><identifier>ISSN: 2572-4517</identifier><identifier>ISSN: 2572-4525</identifier><identifier>EISSN: 2572-4525</identifier><identifier>EISSN: 1944-9186</identifier><identifier>DOI: 10.1029/2018PA003437</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Atlantic meridional overturning circulation ; Atlantic Ocean ; Climatology ; Columnar structure ; Cores ; Earth Sciences ; Equatorial circulation ; Foraminifera ; Fossil Foraminifera ; Heinrich stadials ; Interglacial periods ; Isotopes ; Mixed layer depth ; North Brazil Current ; northeast Brazil ; Northern Hemisphere ; Ocean circulation ; Ocean currents ; Oceanography ; Oceans ; Oxygen ; Sciences of the Universe ; Shoaling ; Stratification ; Thermocline ; Thermocline depth ; Trade winds ; Transport ; Upper ocean ; Water circulation ; Water column ; Wind</subject><ispartof>Paleoceanography and Paleoclimatology, 2018-12, Vol.33 (12), p.1490-1507</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3172-9b19158a8e96f5f6f80657510262e98786783d9e9d4c2a9bc6edddcd79ff8d343</citedby><cites>FETCH-LOGICAL-a3172-9b19158a8e96f5f6f80657510262e98786783d9e9d4c2a9bc6edddcd79ff8d343</cites><orcidid>0000-0003-3318-8022 ; 0000-0001-7211-8049 ; 0000-0001-6500-2697 ; 0000-0003-3118-4247 ; 0000-0002-2455-5719 ; 0000-0002-5221-5922 ; 0000-0002-2718-5901 ; 0000-0003-1267-6190 ; 0000-0001-8512-5571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02181008$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Venancio, I. M.</creatorcontrib><creatorcontrib>Mulitza, S.</creatorcontrib><creatorcontrib>Govin, A.</creatorcontrib><creatorcontrib>Santos, T. P.</creatorcontrib><creatorcontrib>Lessa, D. O.</creatorcontrib><creatorcontrib>Albuquerque, A. L. S.</creatorcontrib><creatorcontrib>Chiessi, C. M.</creatorcontrib><creatorcontrib>Tiedemann, R.</creatorcontrib><creatorcontrib>Vahlenkamp, M.</creatorcontrib><creatorcontrib>Bickert, T.</creatorcontrib><creatorcontrib>Schulz, M.</creatorcontrib><title>Millennial‐ to Orbital‐Scale Responses of Western Equatorial Atlantic Thermocline Depth to Changes in the Trade Wind System Since the Last Interglacial</title><title>Paleoceanography and Paleoclimatology</title><description>Surface ocean circulation in the western equatorial Atlantic is mainly wind driven and plays a major role for the transport of warm waters to the North Atlantic. Past changes in the strength and direction of the trade winds are well documented, but the response of the western equatorial Atlantic circulation and water column structure to these changes is unclear. Here we used the difference between the stable isotopic oxygen composition of two species of planktonic foraminifera (Globigerinoides ruber white and Neogloboquadrina dutertrei) from two sediment cores collected off northeastern Brazil to investigate millennial‐ and orbital‐scale changes in upper ocean stratification since the Last Interglacial. Our records indicate enhanced upper ocean stratification during several Heinrich stadials, partly due to a shoaling of the thermocline, which was linked to a decrease in the strength of southeast trades winds. In addition, we show that a decrease in wind zonality induced by increases in Northern Hemisphere low‐latitude summer insolation causes a shoaling of the thermocline in the western equatorial Atlantic. These ocean‐atmosphere changes contributed to a reduction in the cross‐equatorial transport of warm waters, particularly during Heinrich stadials and Marine Isotope Stage 4. Key Points Changes in western equatorial Atlantic thermocline depth were recorded on millennial and orbital time scales Shoaling of the thermocline during Heinrich stadials was associated with weak southeast trade winds Shoaling of the thermocline during periods of low‐latitude boreal summer insolation maxima occurred due to decreased wind zonality</description><subject>Atlantic meridional overturning circulation</subject><subject>Atlantic Ocean</subject><subject>Climatology</subject><subject>Columnar structure</subject><subject>Cores</subject><subject>Earth Sciences</subject><subject>Equatorial circulation</subject><subject>Foraminifera</subject><subject>Fossil Foraminifera</subject><subject>Heinrich stadials</subject><subject>Interglacial periods</subject><subject>Isotopes</subject><subject>Mixed layer depth</subject><subject>North Brazil Current</subject><subject>northeast Brazil</subject><subject>Northern Hemisphere</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Oxygen</subject><subject>Sciences of the Universe</subject><subject>Shoaling</subject><subject>Stratification</subject><subject>Thermocline</subject><subject>Thermocline depth</subject><subject>Trade winds</subject><subject>Transport</subject><subject>Upper ocean</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Wind</subject><issn>2572-4517</issn><issn>2572-4525</issn><issn>2572-4525</issn><issn>1944-9186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kctOGzEUhkdVKxVRdjyApa4qNcX23OzlKIWCNCioCWJpOfYZxsixg-2AsuMR2PN2fRIcUqGu6o1v3_lk_6cojgn-QTDlJxQTdtVhXFZl-6E4oHVLJ1VN64_va9J-Lo5ivMMYE15WjPKD4uXSWAvOGWn_PD2j5NEsLE16282VtIB-Q1x7FyEiP6AbiAmCQ6f3G5l8yFWoS1a6ZBRajBBWXlnjAP2EdRp3tuko3W2uNQ6lEdAiSA3oxjiN5tusWqG5cQre7noZE7pw2X9rpcrqL8WnQdoIR3_nw-L67HQxPZ_0s18X066fyJLkj_El4aRmkgFvhnpoBoabuq1zKA0FzlrWtKzUHLiuFJV8qRrQWivd8mFgOsd1WHzbe0dpxTqYlQxb4aUR510vdmeYEkYwZg8ks1_37Dr4-01OQ9z5TXD5eYJSzivM88jU9z2lgo8xwPCuJVjsuiX-7VbGyz3-aCxs_8uKq66fUdwwWr4CIk-X4Q</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Venancio, I. M.</creator><creator>Mulitza, S.</creator><creator>Govin, A.</creator><creator>Santos, T. P.</creator><creator>Lessa, D. O.</creator><creator>Albuquerque, A. L. S.</creator><creator>Chiessi, C. M.</creator><creator>Tiedemann, R.</creator><creator>Vahlenkamp, M.</creator><creator>Bickert, T.</creator><creator>Schulz, M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3318-8022</orcidid><orcidid>https://orcid.org/0000-0001-7211-8049</orcidid><orcidid>https://orcid.org/0000-0001-6500-2697</orcidid><orcidid>https://orcid.org/0000-0003-3118-4247</orcidid><orcidid>https://orcid.org/0000-0002-2455-5719</orcidid><orcidid>https://orcid.org/0000-0002-5221-5922</orcidid><orcidid>https://orcid.org/0000-0002-2718-5901</orcidid><orcidid>https://orcid.org/0000-0003-1267-6190</orcidid><orcidid>https://orcid.org/0000-0001-8512-5571</orcidid></search><sort><creationdate>201812</creationdate><title>Millennial‐ to Orbital‐Scale Responses of Western Equatorial Atlantic Thermocline Depth to Changes in the Trade Wind System Since the Last Interglacial</title><author>Venancio, I. M. ; Mulitza, S. ; Govin, A. ; Santos, T. P. ; Lessa, D. O. ; Albuquerque, A. L. S. ; Chiessi, C. M. ; Tiedemann, R. ; Vahlenkamp, M. ; Bickert, T. ; Schulz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3172-9b19158a8e96f5f6f80657510262e98786783d9e9d4c2a9bc6edddcd79ff8d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atlantic meridional overturning circulation</topic><topic>Atlantic Ocean</topic><topic>Climatology</topic><topic>Columnar structure</topic><topic>Cores</topic><topic>Earth Sciences</topic><topic>Equatorial circulation</topic><topic>Foraminifera</topic><topic>Fossil Foraminifera</topic><topic>Heinrich stadials</topic><topic>Interglacial periods</topic><topic>Isotopes</topic><topic>Mixed layer depth</topic><topic>North Brazil Current</topic><topic>northeast Brazil</topic><topic>Northern Hemisphere</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Oxygen</topic><topic>Sciences of the Universe</topic><topic>Shoaling</topic><topic>Stratification</topic><topic>Thermocline</topic><topic>Thermocline depth</topic><topic>Trade winds</topic><topic>Transport</topic><topic>Upper ocean</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venancio, I. M.</creatorcontrib><creatorcontrib>Mulitza, S.</creatorcontrib><creatorcontrib>Govin, A.</creatorcontrib><creatorcontrib>Santos, T. P.</creatorcontrib><creatorcontrib>Lessa, D. O.</creatorcontrib><creatorcontrib>Albuquerque, A. L. S.</creatorcontrib><creatorcontrib>Chiessi, C. M.</creatorcontrib><creatorcontrib>Tiedemann, R.</creatorcontrib><creatorcontrib>Vahlenkamp, M.</creatorcontrib><creatorcontrib>Bickert, T.</creatorcontrib><creatorcontrib>Schulz, M.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Paleoceanography and Paleoclimatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venancio, I. M.</au><au>Mulitza, S.</au><au>Govin, A.</au><au>Santos, T. P.</au><au>Lessa, D. O.</au><au>Albuquerque, A. L. S.</au><au>Chiessi, C. M.</au><au>Tiedemann, R.</au><au>Vahlenkamp, M.</au><au>Bickert, T.</au><au>Schulz, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millennial‐ to Orbital‐Scale Responses of Western Equatorial Atlantic Thermocline Depth to Changes in the Trade Wind System Since the Last Interglacial</atitle><jtitle>Paleoceanography and Paleoclimatology</jtitle><date>2018-12</date><risdate>2018</risdate><volume>33</volume><issue>12</issue><spage>1490</spage><epage>1507</epage><pages>1490-1507</pages><issn>2572-4517</issn><issn>2572-4525</issn><eissn>2572-4525</eissn><eissn>1944-9186</eissn><abstract>Surface ocean circulation in the western equatorial Atlantic is mainly wind driven and plays a major role for the transport of warm waters to the North Atlantic. Past changes in the strength and direction of the trade winds are well documented, but the response of the western equatorial Atlantic circulation and water column structure to these changes is unclear. Here we used the difference between the stable isotopic oxygen composition of two species of planktonic foraminifera (Globigerinoides ruber white and Neogloboquadrina dutertrei) from two sediment cores collected off northeastern Brazil to investigate millennial‐ and orbital‐scale changes in upper ocean stratification since the Last Interglacial. Our records indicate enhanced upper ocean stratification during several Heinrich stadials, partly due to a shoaling of the thermocline, which was linked to a decrease in the strength of southeast trades winds. In addition, we show that a decrease in wind zonality induced by increases in Northern Hemisphere low‐latitude summer insolation causes a shoaling of the thermocline in the western equatorial Atlantic. These ocean‐atmosphere changes contributed to a reduction in the cross‐equatorial transport of warm waters, particularly during Heinrich stadials and Marine Isotope Stage 4. Key Points Changes in western equatorial Atlantic thermocline depth were recorded on millennial and orbital time scales Shoaling of the thermocline during Heinrich stadials was associated with weak southeast trade winds Shoaling of the thermocline during periods of low‐latitude boreal summer insolation maxima occurred due to decreased wind zonality</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018PA003437</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3318-8022</orcidid><orcidid>https://orcid.org/0000-0001-7211-8049</orcidid><orcidid>https://orcid.org/0000-0001-6500-2697</orcidid><orcidid>https://orcid.org/0000-0003-3118-4247</orcidid><orcidid>https://orcid.org/0000-0002-2455-5719</orcidid><orcidid>https://orcid.org/0000-0002-5221-5922</orcidid><orcidid>https://orcid.org/0000-0002-2718-5901</orcidid><orcidid>https://orcid.org/0000-0003-1267-6190</orcidid><orcidid>https://orcid.org/0000-0001-8512-5571</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2572-4517
ispartof Paleoceanography and Paleoclimatology, 2018-12, Vol.33 (12), p.1490-1507
issn 2572-4517
2572-4525
2572-4525
1944-9186
language eng
recordid cdi_hal_primary_oai_HAL_hal_02181008v1
source Wiley-Blackwell Read & Publish Collection; Wiley-Blackwell AGU Digital Archive
subjects Atlantic meridional overturning circulation
Atlantic Ocean
Climatology
Columnar structure
Cores
Earth Sciences
Equatorial circulation
Foraminifera
Fossil Foraminifera
Heinrich stadials
Interglacial periods
Isotopes
Mixed layer depth
North Brazil Current
northeast Brazil
Northern Hemisphere
Ocean circulation
Ocean currents
Oceanography
Oceans
Oxygen
Sciences of the Universe
Shoaling
Stratification
Thermocline
Thermocline depth
Trade winds
Transport
Upper ocean
Water circulation
Water column
Wind
title Millennial‐ to Orbital‐Scale Responses of Western Equatorial Atlantic Thermocline Depth to Changes in the Trade Wind System Since the Last Interglacial
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millennial%E2%80%90%20to%20Orbital%E2%80%90Scale%20Responses%20of%20Western%20Equatorial%20Atlantic%20Thermocline%20Depth%20to%20Changes%20in%20the%20Trade%20Wind%20System%20Since%20the%20Last%20Interglacial&rft.jtitle=Paleoceanography%20and%20Paleoclimatology&rft.au=Venancio,%20I.%20M.&rft.date=2018-12&rft.volume=33&rft.issue=12&rft.spage=1490&rft.epage=1507&rft.pages=1490-1507&rft.issn=2572-4517&rft.eissn=2572-4525&rft_id=info:doi/10.1029/2018PA003437&rft_dat=%3Cproquest_hal_p%3E2299409999%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3172-9b19158a8e96f5f6f80657510262e98786783d9e9d4c2a9bc6edddcd79ff8d343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299409999&rft_id=info:pmid/&rfr_iscdi=true