Loading…

Complex Contagions and the Diffusion of Innovations: Evidence from a Small-N Study

The recent literature on "complex contagions" challenges Granovetter's classic hypothesis on the strength of weak ties and argues that, when the actors' choice requires reinforcement from several sources, it is the structure of strong ties that really matters to sustain rapid and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of archaeological method and theory 2018-12, Vol.25 (4), p.1109-1154
Main Authors: Manzo, Gianluca, Gabbriellini, Simone, Roux, Valentine, M'Mbogori, Freda Nkirote
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recent literature on "complex contagions" challenges Granovetter's classic hypothesis on the strength of weak ties and argues that, when the actors' choice requires reinforcement from several sources, it is the structure of strong ties that really matters to sustain rapid and wide diffusion. The paper contributes to this debate by reporting on a small-N study that relies on a unique combination of ethnographic data, social network analysis, and computational models. In particular, we investigate two rural populations of Indian and Kenyan potters who have to decide whether to adopt new, objectively more efficient and economically more attractive, technical/stylistic options. Qualitative field data show that religious sub-communities within the Indian and Kenyan populations exhibit markedly different diffusion rates and speed over the last thirty years. To account for these differences, we first analyze empirically observed kinship networks and advice networks, and, then, we recreate the actual aggregate diffusion curves through a series of empirically calibrated agent-based simulations. Combining the two methods, we show that, while single exposure through heterophilious weak ties were sufficient to initiate the diffusion process, large bridges made of strong ties can in fact lead to faster or slower diffusion depending on the type of signals circulating in the network. We conclude that, even in presence of "complex contagions," dense local ties cannot be regarded as a sufficient condition for faster diffusion.
ISSN:1072-5369
1573-7764
DOI:10.1007/s10816-018-9393-z