Loading…

Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor

The total instantaneous blockage (TIB) of an assembly in the core of a sodium-cooled fast reactor (SFR) is investigated. Such incident could appear as an abnormal rise in temperature on the assemblies neighbouring the blockage. Its detection relies on a dataset of temperature measurements of the ass...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety 2015-05, Vol.137, p.50-57
Main Authors: Martinez-Martinez, Sinuhe, Messai, Nadhir, Jeannot, Jean-Philippe, Nuzillard, Danielle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-4ed6accf157598050d052c326233a8c60e035e5a50d54004b25645e635d37b953
cites cdi_FETCH-LOGICAL-c367t-4ed6accf157598050d052c326233a8c60e035e5a50d54004b25645e635d37b953
container_end_page 57
container_issue
container_start_page 50
container_title Reliability engineering & system safety
container_volume 137
creator Martinez-Martinez, Sinuhe
Messai, Nadhir
Jeannot, Jean-Philippe
Nuzillard, Danielle
description The total instantaneous blockage (TIB) of an assembly in the core of a sodium-cooled fast reactor (SFR) is investigated. Such incident could appear as an abnormal rise in temperature on the assemblies neighbouring the blockage. Its detection relies on a dataset of temperature measurements of the assemblies making up the core of the French Phenix Nuclear Reactor. The data are provided by the French Commission of Atomic and Alternatives Energies (CEA). Here, two strategies are proposed depending on whether the sensor measurement of the suspected assembly is reliable or not. The proposed methodology implements a time-lagged feed-forward neural (TLFFN) Network in order to predict the one-step-ahead temperature of a given assembly. The incident is declared if the difference between the predicted process and the actual one exceeds a threshold. In these simulated conditions, the method is efficient to detect small gradients as expected in reality. •We study the total instantaneous blockage (TIB) of a sodium-cooled fast reactor.•The TIB symptom is simulated as an abrupt rise on temperature (0.1–1°C/s).•The goal is to improve the early detection of the incident.•Two strategies laying on neural networks are proposed.•TIB is detected in 3s for 1°C/s and 18–21s for 0.1°C/s.
doi_str_mv 10.1016/j.ress.2014.12.003
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02189927v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095183201400310X</els_id><sourcerecordid>1685819621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-4ed6accf157598050d052c326233a8c60e035e5a50d54004b25645e635d37b953</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVJoZs0fyAnHZuD3ZFkyTbkEkLbFBZySc5CK48TbbxWqtFm6b-vjEuPhYGB0fcePD3GrgTUAoT5uq8TEtUSRFMLWQOoD2wjuravoFPmjG2g16LqlIRP7JxoDwBNr9sNOz2eIp_xmNxUVj7F9Mp3jnDglJPL-ByQ-BgTzy_IB8zoc4gzjyN3PMdcVGGm7OYyGI_Ed1P0r-4ZV4LiEI6Hysc4FcfRUeYJnc8xfWYfRzcRXv7dF-zp-7fHu_tq-_Dj593ttvLKtLlqcDDO-1HoVvcdaBhAS6-kkUq5zhtAUBq1Kw-6KZl2UptGo1F6UO2u1-qCXa--L26ybykcXPptowv2_nZrlxtI0fW9bN9FYb-s7FuKv45I2R4CeZymNZsVptOd6I1cULmiPkWihOM_bwF2acTu7dKIXRqxQtrSSBHdrCIsgd8DJks-4OxxCKn8qx1i-J_8D9cmlJI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685819621</pqid></control><display><type>article</type><title>Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor</title><source>ScienceDirect Freedom Collection</source><creator>Martinez-Martinez, Sinuhe ; Messai, Nadhir ; Jeannot, Jean-Philippe ; Nuzillard, Danielle</creator><creatorcontrib>Martinez-Martinez, Sinuhe ; Messai, Nadhir ; Jeannot, Jean-Philippe ; Nuzillard, Danielle</creatorcontrib><description>The total instantaneous blockage (TIB) of an assembly in the core of a sodium-cooled fast reactor (SFR) is investigated. Such incident could appear as an abnormal rise in temperature on the assemblies neighbouring the blockage. Its detection relies on a dataset of temperature measurements of the assemblies making up the core of the French Phenix Nuclear Reactor. The data are provided by the French Commission of Atomic and Alternatives Energies (CEA). Here, two strategies are proposed depending on whether the sensor measurement of the suspected assembly is reliable or not. The proposed methodology implements a time-lagged feed-forward neural (TLFFN) Network in order to predict the one-step-ahead temperature of a given assembly. The incident is declared if the difference between the predicted process and the actual one exceeds a threshold. In these simulated conditions, the method is efficient to detect small gradients as expected in reality. •We study the total instantaneous blockage (TIB) of a sodium-cooled fast reactor.•The TIB symptom is simulated as an abrupt rise on temperature (0.1–1°C/s).•The goal is to improve the early detection of the incident.•Two strategies laying on neural networks are proposed.•TIB is detected in 3s for 1°C/s and 18–21s for 0.1°C/s.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2014.12.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Assembly ; Automatic ; Blockage ; Computer simulation ; Engineering Sciences ; Fast neutron reactor ; Neural networks ; Nuclear engineering ; Nuclear power generation ; Nuclear reactor components ; Nuclear reactors ; Strategy ; Training algorithms</subject><ispartof>Reliability engineering &amp; system safety, 2015-05, Vol.137, p.50-57</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-4ed6accf157598050d052c326233a8c60e035e5a50d54004b25645e635d37b953</citedby><cites>FETCH-LOGICAL-c367t-4ed6accf157598050d052c326233a8c60e035e5a50d54004b25645e635d37b953</cites><orcidid>0000-0001-9394-7444 ; 0000-0001-9161-6393 ; 0000-0001-8248-9839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02189927$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez-Martinez, Sinuhe</creatorcontrib><creatorcontrib>Messai, Nadhir</creatorcontrib><creatorcontrib>Jeannot, Jean-Philippe</creatorcontrib><creatorcontrib>Nuzillard, Danielle</creatorcontrib><title>Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor</title><title>Reliability engineering &amp; system safety</title><description>The total instantaneous blockage (TIB) of an assembly in the core of a sodium-cooled fast reactor (SFR) is investigated. Such incident could appear as an abnormal rise in temperature on the assemblies neighbouring the blockage. Its detection relies on a dataset of temperature measurements of the assemblies making up the core of the French Phenix Nuclear Reactor. The data are provided by the French Commission of Atomic and Alternatives Energies (CEA). Here, two strategies are proposed depending on whether the sensor measurement of the suspected assembly is reliable or not. The proposed methodology implements a time-lagged feed-forward neural (TLFFN) Network in order to predict the one-step-ahead temperature of a given assembly. The incident is declared if the difference between the predicted process and the actual one exceeds a threshold. In these simulated conditions, the method is efficient to detect small gradients as expected in reality. •We study the total instantaneous blockage (TIB) of a sodium-cooled fast reactor.•The TIB symptom is simulated as an abrupt rise on temperature (0.1–1°C/s).•The goal is to improve the early detection of the incident.•Two strategies laying on neural networks are proposed.•TIB is detected in 3s for 1°C/s and 18–21s for 0.1°C/s.</description><subject>Assembly</subject><subject>Automatic</subject><subject>Blockage</subject><subject>Computer simulation</subject><subject>Engineering Sciences</subject><subject>Fast neutron reactor</subject><subject>Neural networks</subject><subject>Nuclear engineering</subject><subject>Nuclear power generation</subject><subject>Nuclear reactor components</subject><subject>Nuclear reactors</subject><subject>Strategy</subject><subject>Training algorithms</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVJoZs0fyAnHZuD3ZFkyTbkEkLbFBZySc5CK48TbbxWqtFm6b-vjEuPhYGB0fcePD3GrgTUAoT5uq8TEtUSRFMLWQOoD2wjuravoFPmjG2g16LqlIRP7JxoDwBNr9sNOz2eIp_xmNxUVj7F9Mp3jnDglJPL-ByQ-BgTzy_IB8zoc4gzjyN3PMdcVGGm7OYyGI_Ed1P0r-4ZV4LiEI6Hysc4FcfRUeYJnc8xfWYfRzcRXv7dF-zp-7fHu_tq-_Dj593ttvLKtLlqcDDO-1HoVvcdaBhAS6-kkUq5zhtAUBq1Kw-6KZl2UptGo1F6UO2u1-qCXa--L26ybykcXPptowv2_nZrlxtI0fW9bN9FYb-s7FuKv45I2R4CeZymNZsVptOd6I1cULmiPkWihOM_bwF2acTu7dKIXRqxQtrSSBHdrCIsgd8DJks-4OxxCKn8qx1i-J_8D9cmlJI</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Martinez-Martinez, Sinuhe</creator><creator>Messai, Nadhir</creator><creator>Jeannot, Jean-Philippe</creator><creator>Nuzillard, Danielle</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9394-7444</orcidid><orcidid>https://orcid.org/0000-0001-9161-6393</orcidid><orcidid>https://orcid.org/0000-0001-8248-9839</orcidid></search><sort><creationdate>20150501</creationdate><title>Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor</title><author>Martinez-Martinez, Sinuhe ; Messai, Nadhir ; Jeannot, Jean-Philippe ; Nuzillard, Danielle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-4ed6accf157598050d052c326233a8c60e035e5a50d54004b25645e635d37b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assembly</topic><topic>Automatic</topic><topic>Blockage</topic><topic>Computer simulation</topic><topic>Engineering Sciences</topic><topic>Fast neutron reactor</topic><topic>Neural networks</topic><topic>Nuclear engineering</topic><topic>Nuclear power generation</topic><topic>Nuclear reactor components</topic><topic>Nuclear reactors</topic><topic>Strategy</topic><topic>Training algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Martinez, Sinuhe</creatorcontrib><creatorcontrib>Messai, Nadhir</creatorcontrib><creatorcontrib>Jeannot, Jean-Philippe</creatorcontrib><creatorcontrib>Nuzillard, Danielle</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Martinez, Sinuhe</au><au>Messai, Nadhir</au><au>Jeannot, Jean-Philippe</au><au>Nuzillard, Danielle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>137</volume><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>The total instantaneous blockage (TIB) of an assembly in the core of a sodium-cooled fast reactor (SFR) is investigated. Such incident could appear as an abnormal rise in temperature on the assemblies neighbouring the blockage. Its detection relies on a dataset of temperature measurements of the assemblies making up the core of the French Phenix Nuclear Reactor. The data are provided by the French Commission of Atomic and Alternatives Energies (CEA). Here, two strategies are proposed depending on whether the sensor measurement of the suspected assembly is reliable or not. The proposed methodology implements a time-lagged feed-forward neural (TLFFN) Network in order to predict the one-step-ahead temperature of a given assembly. The incident is declared if the difference between the predicted process and the actual one exceeds a threshold. In these simulated conditions, the method is efficient to detect small gradients as expected in reality. •We study the total instantaneous blockage (TIB) of a sodium-cooled fast reactor.•The TIB symptom is simulated as an abrupt rise on temperature (0.1–1°C/s).•The goal is to improve the early detection of the incident.•Two strategies laying on neural networks are proposed.•TIB is detected in 3s for 1°C/s and 18–21s for 0.1°C/s.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2014.12.003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9394-7444</orcidid><orcidid>https://orcid.org/0000-0001-9161-6393</orcidid><orcidid>https://orcid.org/0000-0001-8248-9839</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2015-05, Vol.137, p.50-57
issn 0951-8320
1879-0836
language eng
recordid cdi_hal_primary_oai_HAL_hal_02189927v1
source ScienceDirect Freedom Collection
subjects Assembly
Automatic
Blockage
Computer simulation
Engineering Sciences
Fast neutron reactor
Neural networks
Nuclear engineering
Nuclear power generation
Nuclear reactor components
Nuclear reactors
Strategy
Training algorithms
title Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20neural%20network%20based%20strategies%20for%20the%20detection%20of%20a%20total%20instantaneous%20blockage%20of%20a%20sodium-cooled%20fast%20reactor&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Martinez-Martinez,%20Sinuhe&rft.date=2015-05-01&rft.volume=137&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2014.12.003&rft_dat=%3Cproquest_hal_p%3E1685819621%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-4ed6accf157598050d052c326233a8c60e035e5a50d54004b25645e635d37b953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685819621&rft_id=info:pmid/&rfr_iscdi=true