Loading…

Declutching control of a wave energy converter

When hydraulic power take off (PTO) is used to convert the mechanical energy of a wave energy converter (WEC) into a more useful form of energy, the PTO force needs to be controlled. Continuous controlled variation of the PTO force can be approximated by a set of discrete values. This can be impleme...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering 2009-09, Vol.36 (12), p.1015-1024
Main Authors: Babarit, Aurélien, Guglielmi, Michel, Clément, Alain H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When hydraulic power take off (PTO) is used to convert the mechanical energy of a wave energy converter (WEC) into a more useful form of energy, the PTO force needs to be controlled. Continuous controlled variation of the PTO force can be approximated by a set of discrete values. This can be implemented using either variable displacement pumps or several hydraulic cylinders or several high pressure accumulators with different pressure levels. This pseudo-continuous control could lead to a complex PTO with a lot of components. A simpler way for controlling this hydraulic PTO is declutching control, which consists in switching on and off alternatively the wave energy converter's PTO. This can be achieved practically using a simple by-pass valve. In this paper, the control law of the valve is determined by using the optimal command theory. It is shown that, theoretically when considering a wave activated body type of WEC, declutching control can lead to energy absorption performance at least equivalent to that of pseudo-continuous control. The method is then applied to the case of the SEAREV wave energy converter, and it is shown than declutching control can even lead to a higher energy absorption, both in regular and irregular waves.
ISSN:0029-8018
1873-5258
DOI:10.1016/j.oceaneng.2009.05.006