Loading…

Role of Ga Surface Diffusion in the Elongation Mechanism and Optical Properties of Catalyst-Free GaN Nanowires Grown by Molecular Beam Epitaxy

We have shown that both the morphology and elongation mechanism of GaN nanowires homoepitaxially grown by plasma-assisted molecular beam epitaxy (PA-MBE) on a [0001]-oriented GaN nanowire template are strongly affected by the nominal gallium/nitrogen flux ratio as well as by additional Ga flux diffu...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2019-07, Vol.19 (7), p.4250-4256
Main Authors: Gruart, Marion, Jacopin, Gwénolé, Daudin, Bruno
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a494t-c7cced8ea10ec31dbc17a4078d24177ca3c99d9532b76bf2ea7e8f9cb6007ffc3
cites cdi_FETCH-LOGICAL-a494t-c7cced8ea10ec31dbc17a4078d24177ca3c99d9532b76bf2ea7e8f9cb6007ffc3
container_end_page 4256
container_issue 7
container_start_page 4250
container_title Nano letters
container_volume 19
creator Gruart, Marion
Jacopin, Gwénolé
Daudin, Bruno
description We have shown that both the morphology and elongation mechanism of GaN nanowires homoepitaxially grown by plasma-assisted molecular beam epitaxy (PA-MBE) on a [0001]-oriented GaN nanowire template are strongly affected by the nominal gallium/nitrogen flux ratio as well as by additional Ga flux diffusing from the side walls. Nitrogen-rich growth conditions are found to be associated with a surface energy-driven morphology and reduced Ga diffusion on the (0001) plane. This leads to random nucleation on the (0001) top surface and preferential material accumulation at the periphery. By contrast, gallium-rich growth conditions are characterized by enhanced Ga surface diffusion promoting a kinetically driven morphology. This regime is governed by a potential barrier that limits diffusion from the top surface toward nanowire side walls, leading to a concave nanowire top surface morphology. Switching from one regime to the other can be achieved using the surfactant effect of an additional In flux. The optical properties are found to be strongly affected by growth mode, with point defect incorporation and stacking fault formation depending on gallium/nitrogen flux ratio.
doi_str_mv 10.1021/acs.nanolett.9b00023
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02269025v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248380558</sourcerecordid><originalsourceid>FETCH-LOGICAL-a494t-c7cced8ea10ec31dbc17a4078d24177ca3c99d9532b76bf2ea7e8f9cb6007ffc3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEoqXwBgh5CYsMviSTeFmG6RRp2iIu6-jEOWZcJXZqO5R5CZ4ZRzOdJStbx9_5ju0_y94yumCUs4-gwsKCdT3GuJAtpZSLZ9k5KwXNl1Ly56d9XZxlr0K4T4gUJX2ZnQnGCyYKcZ79_ZYExGmyAfJ98hoUks9G6ykYZ4mxJO6QrHtnf0GcKzeodmBNGAjYjtyN0SjoyVfvRvTRYJhVK4jQ70PMrzxiEt-S23TPR-PT8ca7R0vaPblJc9XUgyefEAayHk2EP_vX2QsNfcA3x_Ui-3m1_rG6zrd3my-ry20OhSxiriqlsKsRGEUlWNcqVkFBq7pL76oqBUJJ2clS8LZatpojVFhrqdolpZXWSlxkHw7eHfTN6M0Aft84MM315baZa5TzpaS8_M0S-_7Ajt49TBhiM5igsO_BoptCw3lRi5qWZZ3Q4oAq70LwqE9uRps5tSal1jyl1hxTS23vjhOmdsDu1PQUUwLoAZjb793kbfqc_zv_ARxvqEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248380558</pqid></control><display><type>article</type><title>Role of Ga Surface Diffusion in the Elongation Mechanism and Optical Properties of Catalyst-Free GaN Nanowires Grown by Molecular Beam Epitaxy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gruart, Marion ; Jacopin, Gwénolé ; Daudin, Bruno</creator><creatorcontrib>Gruart, Marion ; Jacopin, Gwénolé ; Daudin, Bruno</creatorcontrib><description>We have shown that both the morphology and elongation mechanism of GaN nanowires homoepitaxially grown by plasma-assisted molecular beam epitaxy (PA-MBE) on a [0001]-oriented GaN nanowire template are strongly affected by the nominal gallium/nitrogen flux ratio as well as by additional Ga flux diffusing from the side walls. Nitrogen-rich growth conditions are found to be associated with a surface energy-driven morphology and reduced Ga diffusion on the (0001) plane. This leads to random nucleation on the (0001) top surface and preferential material accumulation at the periphery. By contrast, gallium-rich growth conditions are characterized by enhanced Ga surface diffusion promoting a kinetically driven morphology. This regime is governed by a potential barrier that limits diffusion from the top surface toward nanowire side walls, leading to a concave nanowire top surface morphology. Switching from one regime to the other can be achieved using the surfactant effect of an additional In flux. The optical properties are found to be strongly affected by growth mode, with point defect incorporation and stacking fault formation depending on gallium/nitrogen flux ratio.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b00023</identifier><identifier>PMID: 31241343</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Condensed Matter ; Engineering Sciences ; Materials Science ; Micro and nanotechnologies ; Microelectronics ; Optics ; Photonic ; Physics</subject><ispartof>Nano letters, 2019-07, Vol.19 (7), p.4250-4256</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a494t-c7cced8ea10ec31dbc17a4078d24177ca3c99d9532b76bf2ea7e8f9cb6007ffc3</citedby><cites>FETCH-LOGICAL-a494t-c7cced8ea10ec31dbc17a4078d24177ca3c99d9532b76bf2ea7e8f9cb6007ffc3</cites><orcidid>0000-0003-3979-0268 ; 0000-0003-0049-7195 ; 0000-0001-8203-5095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31241343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-02269025$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gruart, Marion</creatorcontrib><creatorcontrib>Jacopin, Gwénolé</creatorcontrib><creatorcontrib>Daudin, Bruno</creatorcontrib><title>Role of Ga Surface Diffusion in the Elongation Mechanism and Optical Properties of Catalyst-Free GaN Nanowires Grown by Molecular Beam Epitaxy</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We have shown that both the morphology and elongation mechanism of GaN nanowires homoepitaxially grown by plasma-assisted molecular beam epitaxy (PA-MBE) on a [0001]-oriented GaN nanowire template are strongly affected by the nominal gallium/nitrogen flux ratio as well as by additional Ga flux diffusing from the side walls. Nitrogen-rich growth conditions are found to be associated with a surface energy-driven morphology and reduced Ga diffusion on the (0001) plane. This leads to random nucleation on the (0001) top surface and preferential material accumulation at the periphery. By contrast, gallium-rich growth conditions are characterized by enhanced Ga surface diffusion promoting a kinetically driven morphology. This regime is governed by a potential barrier that limits diffusion from the top surface toward nanowire side walls, leading to a concave nanowire top surface morphology. Switching from one regime to the other can be achieved using the surfactant effect of an additional In flux. The optical properties are found to be strongly affected by growth mode, with point defect incorporation and stacking fault formation depending on gallium/nitrogen flux ratio.</description><subject>Condensed Matter</subject><subject>Engineering Sciences</subject><subject>Materials Science</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhiMEoqXwBgh5CYsMviSTeFmG6RRp2iIu6-jEOWZcJXZqO5R5CZ4ZRzOdJStbx9_5ju0_y94yumCUs4-gwsKCdT3GuJAtpZSLZ9k5KwXNl1Ly56d9XZxlr0K4T4gUJX2ZnQnGCyYKcZ79_ZYExGmyAfJ98hoUks9G6ykYZ4mxJO6QrHtnf0GcKzeodmBNGAjYjtyN0SjoyVfvRvTRYJhVK4jQ70PMrzxiEt-S23TPR-PT8ca7R0vaPblJc9XUgyefEAayHk2EP_vX2QsNfcA3x_Ui-3m1_rG6zrd3my-ry20OhSxiriqlsKsRGEUlWNcqVkFBq7pL76oqBUJJ2clS8LZatpojVFhrqdolpZXWSlxkHw7eHfTN6M0Aft84MM315baZa5TzpaS8_M0S-_7Ajt49TBhiM5igsO_BoptCw3lRi5qWZZ3Q4oAq70LwqE9uRps5tSal1jyl1hxTS23vjhOmdsDu1PQUUwLoAZjb793kbfqc_zv_ARxvqEY</recordid><startdate>20190710</startdate><enddate>20190710</enddate><creator>Gruart, Marion</creator><creator>Jacopin, Gwénolé</creator><creator>Daudin, Bruno</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3979-0268</orcidid><orcidid>https://orcid.org/0000-0003-0049-7195</orcidid><orcidid>https://orcid.org/0000-0001-8203-5095</orcidid></search><sort><creationdate>20190710</creationdate><title>Role of Ga Surface Diffusion in the Elongation Mechanism and Optical Properties of Catalyst-Free GaN Nanowires Grown by Molecular Beam Epitaxy</title><author>Gruart, Marion ; Jacopin, Gwénolé ; Daudin, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a494t-c7cced8ea10ec31dbc17a4078d24177ca3c99d9532b76bf2ea7e8f9cb6007ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Condensed Matter</topic><topic>Engineering Sciences</topic><topic>Materials Science</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruart, Marion</creatorcontrib><creatorcontrib>Jacopin, Gwénolé</creatorcontrib><creatorcontrib>Daudin, Bruno</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruart, Marion</au><au>Jacopin, Gwénolé</au><au>Daudin, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Ga Surface Diffusion in the Elongation Mechanism and Optical Properties of Catalyst-Free GaN Nanowires Grown by Molecular Beam Epitaxy</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-07-10</date><risdate>2019</risdate><volume>19</volume><issue>7</issue><spage>4250</spage><epage>4256</epage><pages>4250-4256</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We have shown that both the morphology and elongation mechanism of GaN nanowires homoepitaxially grown by plasma-assisted molecular beam epitaxy (PA-MBE) on a [0001]-oriented GaN nanowire template are strongly affected by the nominal gallium/nitrogen flux ratio as well as by additional Ga flux diffusing from the side walls. Nitrogen-rich growth conditions are found to be associated with a surface energy-driven morphology and reduced Ga diffusion on the (0001) plane. This leads to random nucleation on the (0001) top surface and preferential material accumulation at the periphery. By contrast, gallium-rich growth conditions are characterized by enhanced Ga surface diffusion promoting a kinetically driven morphology. This regime is governed by a potential barrier that limits diffusion from the top surface toward nanowire side walls, leading to a concave nanowire top surface morphology. Switching from one regime to the other can be achieved using the surfactant effect of an additional In flux. The optical properties are found to be strongly affected by growth mode, with point defect incorporation and stacking fault formation depending on gallium/nitrogen flux ratio.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31241343</pmid><doi>10.1021/acs.nanolett.9b00023</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3979-0268</orcidid><orcidid>https://orcid.org/0000-0003-0049-7195</orcidid><orcidid>https://orcid.org/0000-0001-8203-5095</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-07, Vol.19 (7), p.4250-4256
issn 1530-6984
1530-6992
language eng
recordid cdi_hal_primary_oai_HAL_hal_02269025v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Condensed Matter
Engineering Sciences
Materials Science
Micro and nanotechnologies
Microelectronics
Optics
Photonic
Physics
title Role of Ga Surface Diffusion in the Elongation Mechanism and Optical Properties of Catalyst-Free GaN Nanowires Grown by Molecular Beam Epitaxy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Ga%20Surface%20Diffusion%20in%20the%20Elongation%20Mechanism%20and%20Optical%20Properties%20of%20Catalyst-Free%20GaN%20Nanowires%20Grown%20by%20Molecular%20Beam%20Epitaxy&rft.jtitle=Nano%20letters&rft.au=Gruart,%20Marion&rft.date=2019-07-10&rft.volume=19&rft.issue=7&rft.spage=4250&rft.epage=4256&rft.pages=4250-4256&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b00023&rft_dat=%3Cproquest_hal_p%3E2248380558%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a494t-c7cced8ea10ec31dbc17a4078d24177ca3c99d9532b76bf2ea7e8f9cb6007ffc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2248380558&rft_id=info:pmid/31241343&rfr_iscdi=true