Loading…

Molecular characterization of a recurrent 10.9 kb CYP24A1 deletion in Idiopathic Infantile Hypercalcemia

Loss-of-function mutations in CYP24A1 (MIM 126065 20q13.2), the gene encoding the 24-hydroxylase responsible for 25-OH-D and 1,25-(OH)2D degradation, are identified in about 20% of patients presenting Idiopathic Infantile Hypercalcemia (IIH) (MIM 143880). Common features of this autosomal recessive...

Full description

Saved in:
Bibliographic Details
Published in:European journal of medical genetics 2019-11, Vol.62 (11), p.103577-103577, Article 103577
Main Authors: Molin, Arnaud, Nowoczyn, Marie, Coudray, Nadia, Ballandone, Céline, Abéguilé, Geneviève, Mittre, Hervé, Richard, Nicolas, Eckart, Philippe, Castanet, Mireille, Kottler, Marie-Laure
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Loss-of-function mutations in CYP24A1 (MIM 126065 20q13.2), the gene encoding the 24-hydroxylase responsible for 25-OH-D and 1,25-(OH)2D degradation, are identified in about 20% of patients presenting Idiopathic Infantile Hypercalcemia (IIH) (MIM 143880). Common features of this autosomal recessive condition included hypercalcemia with hypercalciuria, suppressed PTH and a high 25-OH-D3:24,25-(OH)2D3 ratio. Medical care mainly relies on sun protection and life-long contraindication of vitamin D to avoid complications such as early nephrocalcinosis and renal failure. Molecular diagnosis therefore keeps a crucial place in the diagnosis of IIH, and genetic counseling should be systematically recommended to prevent vitamin D administration in affected siblings. In this report is described the molecular characterization of a CYP24A1 deletion identified in two unrelated families. This highlights the potential role of CYP24A1 copy number variations (CNV) in IIH. Considering the presence of CNV affecting CYP24A1 in public databases, CNV analysis should be systematically added to the sequencing studies in IIH. Targeted Massively Parallel Sequencing (MPS) study coupled with a CNV detection tool called CovCop is a powerful method to detect genic rearrangement and improve genetic analysis.
ISSN:1769-7212
1878-0849
DOI:10.1016/j.ejmg.2018.11.011