Loading…

Thermodiffusion of citrate-coated γ-Fe 2 O 3 nanoparticles in aqueous dispersions with tuned counter-ions - anisotropy of the Soret coefficient under a magnetic field

Under a temperature gradient, the direction of thermodiffusion of charged γ-Fe2O3 nanoparticles (NPs) depends on the nature of the counter-ions present in the dispersion, resulting in either a positive or negative Soret coefficient. Various counter-ions are probed in finely tuned and well characteri...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2019-01, Vol.21 (4), p.1895-1903
Main Authors: Kouyaté, M, Filomeno, C L, Demouchy, G, Mériguet, G, Nakamae, S, Peyre, V, Roger, M, Cēbers, A, Depeyrot, J, Dubois, E, Perzynski, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1334-2e66df25f65aa4d35cd6e930222ba9493c828bf961df80b4afccf7ef68b4a9533
cites cdi_FETCH-LOGICAL-c1334-2e66df25f65aa4d35cd6e930222ba9493c828bf961df80b4afccf7ef68b4a9533
container_end_page 1903
container_issue 4
container_start_page 1895
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Kouyaté, M
Filomeno, C L
Demouchy, G
Mériguet, G
Nakamae, S
Peyre, V
Roger, M
Cēbers, A
Depeyrot, J
Dubois, E
Perzynski, R
description Under a temperature gradient, the direction of thermodiffusion of charged γ-Fe2O3 nanoparticles (NPs) depends on the nature of the counter-ions present in the dispersion, resulting in either a positive or negative Soret coefficient. Various counter-ions are probed in finely tuned and well characterized dispersions of citrate-coated NPs at comparable concentrations of free ionic species. The Soret coefficient ST is measured in stationary conditions together with the mass-diffusion coefficient Dm using a forced Rayleigh scattering method. The strong interparticle repulsion, determined by SAXS, is also attested by the increase of Dm with NP volume fraction Φ. The Φ-dependence of ST is analyzed in terms of thermophoretic and thermoelectric contributions of the various ionic species. The obtained single-particle thermophoretic contribution of the NPs (the Eastman entropy of transfer ŝNP) varies linearly with the entropy of transfer of the counter-ions. This is understood in terms of electrostatic contribution and of hydration of the ionic shell surrounding the NPs. Two aqueous dispersions, respectively, with ST > 0 and with ST < 0 are then probed under an applied field H[combining right harpoon above], and an anisotropy of Dm and of ST is induced while the in-field system remains monophasic. Whatever the H[combining right harpoon above]-direction (parallel or perpendicular to the gradients and ), the Soret coefficient is modulated keeping the same sign as in zero applied field. In-field experimental determinations are well described using a mean field model of the interparticle magnetic interaction.
doi_str_mv 10.1039/C8CP06858E
format article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02275983v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30632574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1334-2e66df25f65aa4d35cd6e930222ba9493c828bf961df80b4afccf7ef68b4a9533</originalsourceid><addsrcrecordid>eNpFkcFOGzEQhq0K1ADtpQ-A5grSgr3edbxHFAFBihSk0vPKsceNq8RebC9VnqgPwHv0mdhtaLjM_Bp9_z-Hn5BvjF4xypvrmZw9UiFrefuJnLBK8KKhsjo66KmYkNOUflFKWc34ZzLhVPCynlYn5M_TGuM2GGdtn1zwECxol6PKWOgwTAN_X4s7hBKWwMErHzoVs9MbTOA8qOceQ5_AuNRhHBMS_HZ5Dbn3g1eH3meMxb97Acq7FHIM3W78k9cI30PEPGBordMOfYbeG4ygYKt-ehwegXW4MV_IsVWbhF_f9xn5cXf7NJsXi-X9w-xmUWjGeVWUKISxZW1FrVRleK2NwIbTsixXqqkarmUpV7YRzFhJV5WyWtspWiEH3dScn5GLfe5abdouuq2KuzYo185vFu14G6KmdSP5CxvYyz2rY0gpoj0YGG3HZtqPZgb4fA93_WqL5oD-r4K_AcAbi_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodiffusion of citrate-coated γ-Fe 2 O 3 nanoparticles in aqueous dispersions with tuned counter-ions - anisotropy of the Soret coefficient under a magnetic field</title><source>Royal Society of Chemistry</source><creator>Kouyaté, M ; Filomeno, C L ; Demouchy, G ; Mériguet, G ; Nakamae, S ; Peyre, V ; Roger, M ; Cēbers, A ; Depeyrot, J ; Dubois, E ; Perzynski, R</creator><creatorcontrib>Kouyaté, M ; Filomeno, C L ; Demouchy, G ; Mériguet, G ; Nakamae, S ; Peyre, V ; Roger, M ; Cēbers, A ; Depeyrot, J ; Dubois, E ; Perzynski, R</creatorcontrib><description>Under a temperature gradient, the direction of thermodiffusion of charged γ-Fe2O3 nanoparticles (NPs) depends on the nature of the counter-ions present in the dispersion, resulting in either a positive or negative Soret coefficient. Various counter-ions are probed in finely tuned and well characterized dispersions of citrate-coated NPs at comparable concentrations of free ionic species. The Soret coefficient ST is measured in stationary conditions together with the mass-diffusion coefficient Dm using a forced Rayleigh scattering method. The strong interparticle repulsion, determined by SAXS, is also attested by the increase of Dm with NP volume fraction Φ. The Φ-dependence of ST is analyzed in terms of thermophoretic and thermoelectric contributions of the various ionic species. The obtained single-particle thermophoretic contribution of the NPs (the Eastman entropy of transfer ŝNP) varies linearly with the entropy of transfer of the counter-ions. This is understood in terms of electrostatic contribution and of hydration of the ionic shell surrounding the NPs. Two aqueous dispersions, respectively, with ST &gt; 0 and with ST &lt; 0 are then probed under an applied field H[combining right harpoon above], and an anisotropy of Dm and of ST is induced while the in-field system remains monophasic. Whatever the H[combining right harpoon above]-direction (parallel or perpendicular to the gradients and ), the Soret coefficient is modulated keeping the same sign as in zero applied field. In-field experimental determinations are well described using a mean field model of the interparticle magnetic interaction.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/C8CP06858E</identifier><identifier>PMID: 30632574</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemical Physics ; Physics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-01, Vol.21 (4), p.1895-1903</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1334-2e66df25f65aa4d35cd6e930222ba9493c828bf961df80b4afccf7ef68b4a9533</citedby><cites>FETCH-LOGICAL-c1334-2e66df25f65aa4d35cd6e930222ba9493c828bf961df80b4afccf7ef68b4a9533</cites><orcidid>0000-0003-3979-4904 ; 0000-0002-9921-0395 ; 0000-0001-9174-3165 ; 0000-0002-5129-1544 ; 0000-0002-6634-6245 ; 0000-0001-8554-8486 ; 0000-0002-1689-573X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30632574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02275983$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouyaté, M</creatorcontrib><creatorcontrib>Filomeno, C L</creatorcontrib><creatorcontrib>Demouchy, G</creatorcontrib><creatorcontrib>Mériguet, G</creatorcontrib><creatorcontrib>Nakamae, S</creatorcontrib><creatorcontrib>Peyre, V</creatorcontrib><creatorcontrib>Roger, M</creatorcontrib><creatorcontrib>Cēbers, A</creatorcontrib><creatorcontrib>Depeyrot, J</creatorcontrib><creatorcontrib>Dubois, E</creatorcontrib><creatorcontrib>Perzynski, R</creatorcontrib><title>Thermodiffusion of citrate-coated γ-Fe 2 O 3 nanoparticles in aqueous dispersions with tuned counter-ions - anisotropy of the Soret coefficient under a magnetic field</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Under a temperature gradient, the direction of thermodiffusion of charged γ-Fe2O3 nanoparticles (NPs) depends on the nature of the counter-ions present in the dispersion, resulting in either a positive or negative Soret coefficient. Various counter-ions are probed in finely tuned and well characterized dispersions of citrate-coated NPs at comparable concentrations of free ionic species. The Soret coefficient ST is measured in stationary conditions together with the mass-diffusion coefficient Dm using a forced Rayleigh scattering method. The strong interparticle repulsion, determined by SAXS, is also attested by the increase of Dm with NP volume fraction Φ. The Φ-dependence of ST is analyzed in terms of thermophoretic and thermoelectric contributions of the various ionic species. The obtained single-particle thermophoretic contribution of the NPs (the Eastman entropy of transfer ŝNP) varies linearly with the entropy of transfer of the counter-ions. This is understood in terms of electrostatic contribution and of hydration of the ionic shell surrounding the NPs. Two aqueous dispersions, respectively, with ST &gt; 0 and with ST &lt; 0 are then probed under an applied field H[combining right harpoon above], and an anisotropy of Dm and of ST is induced while the in-field system remains monophasic. Whatever the H[combining right harpoon above]-direction (parallel or perpendicular to the gradients and ), the Soret coefficient is modulated keeping the same sign as in zero applied field. In-field experimental determinations are well described using a mean field model of the interparticle magnetic interaction.</description><subject>Chemical Physics</subject><subject>Physics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkcFOGzEQhq0K1ADtpQ-A5grSgr3edbxHFAFBihSk0vPKsceNq8RebC9VnqgPwHv0mdhtaLjM_Bp9_z-Hn5BvjF4xypvrmZw9UiFrefuJnLBK8KKhsjo66KmYkNOUflFKWc34ZzLhVPCynlYn5M_TGuM2GGdtn1zwECxol6PKWOgwTAN_X4s7hBKWwMErHzoVs9MbTOA8qOceQ5_AuNRhHBMS_HZ5Dbn3g1eH3meMxb97Acq7FHIM3W78k9cI30PEPGBordMOfYbeG4ygYKt-ehwegXW4MV_IsVWbhF_f9xn5cXf7NJsXi-X9w-xmUWjGeVWUKISxZW1FrVRleK2NwIbTsixXqqkarmUpV7YRzFhJV5WyWtspWiEH3dScn5GLfe5abdouuq2KuzYo185vFu14G6KmdSP5CxvYyz2rY0gpoj0YGG3HZtqPZgb4fA93_WqL5oD-r4K_AcAbi_I</recordid><startdate>20190123</startdate><enddate>20190123</enddate><creator>Kouyaté, M</creator><creator>Filomeno, C L</creator><creator>Demouchy, G</creator><creator>Mériguet, G</creator><creator>Nakamae, S</creator><creator>Peyre, V</creator><creator>Roger, M</creator><creator>Cēbers, A</creator><creator>Depeyrot, J</creator><creator>Dubois, E</creator><creator>Perzynski, R</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3979-4904</orcidid><orcidid>https://orcid.org/0000-0002-9921-0395</orcidid><orcidid>https://orcid.org/0000-0001-9174-3165</orcidid><orcidid>https://orcid.org/0000-0002-5129-1544</orcidid><orcidid>https://orcid.org/0000-0002-6634-6245</orcidid><orcidid>https://orcid.org/0000-0001-8554-8486</orcidid><orcidid>https://orcid.org/0000-0002-1689-573X</orcidid></search><sort><creationdate>20190123</creationdate><title>Thermodiffusion of citrate-coated γ-Fe 2 O 3 nanoparticles in aqueous dispersions with tuned counter-ions - anisotropy of the Soret coefficient under a magnetic field</title><author>Kouyaté, M ; Filomeno, C L ; Demouchy, G ; Mériguet, G ; Nakamae, S ; Peyre, V ; Roger, M ; Cēbers, A ; Depeyrot, J ; Dubois, E ; Perzynski, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1334-2e66df25f65aa4d35cd6e930222ba9493c828bf961df80b4afccf7ef68b4a9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouyaté, M</creatorcontrib><creatorcontrib>Filomeno, C L</creatorcontrib><creatorcontrib>Demouchy, G</creatorcontrib><creatorcontrib>Mériguet, G</creatorcontrib><creatorcontrib>Nakamae, S</creatorcontrib><creatorcontrib>Peyre, V</creatorcontrib><creatorcontrib>Roger, M</creatorcontrib><creatorcontrib>Cēbers, A</creatorcontrib><creatorcontrib>Depeyrot, J</creatorcontrib><creatorcontrib>Dubois, E</creatorcontrib><creatorcontrib>Perzynski, R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouyaté, M</au><au>Filomeno, C L</au><au>Demouchy, G</au><au>Mériguet, G</au><au>Nakamae, S</au><au>Peyre, V</au><au>Roger, M</au><au>Cēbers, A</au><au>Depeyrot, J</au><au>Dubois, E</au><au>Perzynski, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodiffusion of citrate-coated γ-Fe 2 O 3 nanoparticles in aqueous dispersions with tuned counter-ions - anisotropy of the Soret coefficient under a magnetic field</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019-01-23</date><risdate>2019</risdate><volume>21</volume><issue>4</issue><spage>1895</spage><epage>1903</epage><pages>1895-1903</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Under a temperature gradient, the direction of thermodiffusion of charged γ-Fe2O3 nanoparticles (NPs) depends on the nature of the counter-ions present in the dispersion, resulting in either a positive or negative Soret coefficient. Various counter-ions are probed in finely tuned and well characterized dispersions of citrate-coated NPs at comparable concentrations of free ionic species. The Soret coefficient ST is measured in stationary conditions together with the mass-diffusion coefficient Dm using a forced Rayleigh scattering method. The strong interparticle repulsion, determined by SAXS, is also attested by the increase of Dm with NP volume fraction Φ. The Φ-dependence of ST is analyzed in terms of thermophoretic and thermoelectric contributions of the various ionic species. The obtained single-particle thermophoretic contribution of the NPs (the Eastman entropy of transfer ŝNP) varies linearly with the entropy of transfer of the counter-ions. This is understood in terms of electrostatic contribution and of hydration of the ionic shell surrounding the NPs. Two aqueous dispersions, respectively, with ST &gt; 0 and with ST &lt; 0 are then probed under an applied field H[combining right harpoon above], and an anisotropy of Dm and of ST is induced while the in-field system remains monophasic. Whatever the H[combining right harpoon above]-direction (parallel or perpendicular to the gradients and ), the Soret coefficient is modulated keeping the same sign as in zero applied field. In-field experimental determinations are well described using a mean field model of the interparticle magnetic interaction.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30632574</pmid><doi>10.1039/C8CP06858E</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3979-4904</orcidid><orcidid>https://orcid.org/0000-0002-9921-0395</orcidid><orcidid>https://orcid.org/0000-0001-9174-3165</orcidid><orcidid>https://orcid.org/0000-0002-5129-1544</orcidid><orcidid>https://orcid.org/0000-0002-6634-6245</orcidid><orcidid>https://orcid.org/0000-0001-8554-8486</orcidid><orcidid>https://orcid.org/0000-0002-1689-573X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019-01, Vol.21 (4), p.1895-1903
issn 1463-9076
1463-9084
language eng
recordid cdi_hal_primary_oai_HAL_hal_02275983v1
source Royal Society of Chemistry
subjects Chemical Physics
Physics
title Thermodiffusion of citrate-coated γ-Fe 2 O 3 nanoparticles in aqueous dispersions with tuned counter-ions - anisotropy of the Soret coefficient under a magnetic field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodiffusion%20of%20citrate-coated%20%CE%B3-Fe%202%20O%203%20nanoparticles%20in%20aqueous%20dispersions%20with%20tuned%20counter-ions%20-%20anisotropy%20of%20the%20Soret%20coefficient%20under%20a%20magnetic%20field&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Kouyat%C3%A9,%20M&rft.date=2019-01-23&rft.volume=21&rft.issue=4&rft.spage=1895&rft.epage=1903&rft.pages=1895-1903&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/C8CP06858E&rft_dat=%3Cpubmed_hal_p%3E30632574%3C/pubmed_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1334-2e66df25f65aa4d35cd6e930222ba9493c828bf961df80b4afccf7ef68b4a9533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30632574&rfr_iscdi=true