Loading…

A Novel K ATP Current in Cultured Neonatal Rat Atrial Appendage Cardiomyocytes

Abstract —The functional and pharmacological properties of ATP-sensitive K + (K ATP ) channels were studied in primary cultured neonatal rat atrial appendage cardiomyocytes. Activation of a whole-cell inward rectifying K + current depended on the pipette ATP concentration and correlated with a membr...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 1999-10, Vol.85 (8), p.707-715
Main Authors: Baron, Anne, van Bever, Laurianne, Monnier, Dominique, Roatti, Angela, Baertschi, Alex J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract —The functional and pharmacological properties of ATP-sensitive K + (K ATP ) channels were studied in primary cultured neonatal rat atrial appendage cardiomyocytes. Activation of a whole-cell inward rectifying K + current depended on the pipette ATP concentration and correlated with a membrane hyperpolarization close to the K + equilibrium potential. The K ATP current could be activated either spontaneously or by a hypotonic stretch of the membrane induced by lowering the osmolality of the bathing solution from 290 to 260 mOsm/kg H 2 O or by the K + channel openers diazoxide and cromakalim with EC 50 ≈1 and 10 nmol/L, respectively. The activated atrial K ATP current was highly sensitive to glyburide, with an IC 50 of 1.22±0.15 nmol/L. Recorded in inside-out patches, the neonatal atrial K ATP channel displayed a conductance of 58.0±2.2 pS and opened in bursts of 133.8±20.4 ms duration, with an open time duration of 1.40±0.10 ms and a close time duration of 0.66±0.04 ms for negative potentials. The channel had a half-maximal open probability at 0.1 mmol/L ATP, was activated by 100 μmol/L diazoxide, and was inhibited by glyburide, with an IC 50 in the nanomolar range. Thus, pending further tests at low concentrations of K ATP channel openers, the single-channel data confirm the results obtained with whole-cell recordings. The neonatal atrial appendage K ATP channel thus shows a unique functional and pharmacological profile resembling the pancreatic β-cell channel for its high affinity for glyburide and diazoxide and for its conductance, but also resembling the ventricular channel subtype for its high affinity for cromakalim, its burst duration, and its sensitivity to ATP. Reverse transcriptase–polymerase chain reaction experiments showed the expression of Kir6.1, Kir6.2, SUR1A, SUR1B, SUR2A, and SUR2B subunits, a finding supporting the hypothesis that the neonatal atrial K ATP channel corresponds to a novel heteromultimeric association of K ATP channel subunits.
ISSN:0009-7330
1524-4571
DOI:10.1161/01.RES.85.8.707