Loading…

A Geant4 simulation for three-dimensional proton imaging of microscopic samples

•A Geant4 simulation was developed for three-dimensional proton micro-imaging.•Several phantoms are available, including a Caenorhabditis elegans.•3D mass density distribution was obtained from proton transmission microtomography.•Element content distribution was obtained from X-ray emission microto...

Full description

Saved in:
Bibliographic Details
Published in:Physica medica 2019-09, Vol.65, p.172-180
Main Authors: Michelet, Claire, Li, Zhuxin, Yang, Wen, Incerti, Sébastien, Desbarats, Pascal, Giovannelli, Jean-François, Barberet, Philippe, Delville, Marie-Hélène, Gordillo, Nuria, Devès, Guillaume, Seznec, Hervé
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-ea24a4d67cc1dae4f7ae32a2708b2a3c2ab14e81a02d589544ac2e885928d863
cites cdi_FETCH-LOGICAL-c434t-ea24a4d67cc1dae4f7ae32a2708b2a3c2ab14e81a02d589544ac2e885928d863
container_end_page 180
container_issue
container_start_page 172
container_title Physica medica
container_volume 65
creator Michelet, Claire
Li, Zhuxin
Yang, Wen
Incerti, Sébastien
Desbarats, Pascal
Giovannelli, Jean-François
Barberet, Philippe
Delville, Marie-Hélène
Gordillo, Nuria
Devès, Guillaume
Seznec, Hervé
description •A Geant4 simulation was developed for three-dimensional proton micro-imaging.•Several phantoms are available, including a Caenorhabditis elegans.•3D mass density distribution was obtained from proton transmission microtomography.•Element content distribution was obtained from X-ray emission microtomography.•20 primary protons per shot is an optimal number for transmission microtomography. Proton imaging can be carried out on microscopic samples by focusing the beam to a diameter ranging from a few micrometers down to a few tens of nanometers, depending on the required beam intensity and spatial resolution. Three-dimensional (3D) imaging by tomography is obtained from proton transmission (STIM: Scanning Transmission Ion Microscopy) and/or X-ray emission (PIXE: Particle Induced X-ray Emission). In these experiments, the samples are dehydrated for under vacuum analysis. In situ quantification of nanoparticles has been carried out at CENBG in the frame of nanotoxicology studies, on cells and small organisms used as biological models, especially on Caenorhabditis elegans (C. elegans) nematodes. Tomography experiments reveal the distribution of mass density and chemical content (in g.cm−3) within the analyzed volume. These density values are obtained using an inversion algorithm. To investigate the effect of this data reduction process, we defined different numerical phantoms, including a (dehydrated) C. elegans phantom whose geometry and density were derived from experimental data. A Monte Carlo simulation based on the Geant4 toolkit was developed. Using different simulation and reconstruction conditions, we compared the resulting tomographic images to the initial numerical reference phantom. A study of the relative error between the reconstructed and the reference images lead to the result that 20 protons per shot can be considered as an optimal number for 3D STIM imaging. Preliminary results for PIXE tomography are also presented, showing the interest of such numerical phantoms to produce reference data for future studies on X-ray signal attenuation in thick samples.
doi_str_mv 10.1016/j.ejmp.2019.08.022
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02281684v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1120179719302029</els_id><sourcerecordid>2287513852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-ea24a4d67cc1dae4f7ae32a2708b2a3c2ab14e81a02d589544ac2e885928d863</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq0KVCjtC_RQ5QiHpJ6Js3EkLqsVhUorceHAzZp1JuBVEgc7i8Tb42gpx55sjb_5x_MJ8RNkARJWv_cF74epQAlNIXUhEb-Ic6hR5dDA40m6A8oc6qY-E99i3EtZIlbVV3FWgmpUWcO5uF9nt0zjrLLohkNPs_Nj1vmQzc-BOW_dwGNMNeqzKfg5PbqBntz4lPkuG5wNPlo_OZtFGqae43dx2lEf-cfHeSEe_tw8bO7y7f3t3816m1tVqjlnQkWqXdXWQkusupq4RMJa6h1SaZF2oFgDSWwr3VRKkUXWumpQt3pVXoirY-wz9WYK6U_hzXhy5m69NUstydCw0uoVEnt5ZNMCLweOsxlctNz3NLI_RJPIuoJSV5hQPKLLXjFw95kN0izOzd4szs3i3Ei9jElNvz7yD7uB28-Wf5ITcH0EOAl5dRxMtI5Hy60LbGfTeve__HfhQZIx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287513852</pqid></control><display><type>article</type><title>A Geant4 simulation for three-dimensional proton imaging of microscopic samples</title><source>ScienceDirect Freedom Collection</source><creator>Michelet, Claire ; Li, Zhuxin ; Yang, Wen ; Incerti, Sébastien ; Desbarats, Pascal ; Giovannelli, Jean-François ; Barberet, Philippe ; Delville, Marie-Hélène ; Gordillo, Nuria ; Devès, Guillaume ; Seznec, Hervé</creator><creatorcontrib>Michelet, Claire ; Li, Zhuxin ; Yang, Wen ; Incerti, Sébastien ; Desbarats, Pascal ; Giovannelli, Jean-François ; Barberet, Philippe ; Delville, Marie-Hélène ; Gordillo, Nuria ; Devès, Guillaume ; Seznec, Hervé</creatorcontrib><description>•A Geant4 simulation was developed for three-dimensional proton micro-imaging.•Several phantoms are available, including a Caenorhabditis elegans.•3D mass density distribution was obtained from proton transmission microtomography.•Element content distribution was obtained from X-ray emission microtomography.•20 primary protons per shot is an optimal number for transmission microtomography. Proton imaging can be carried out on microscopic samples by focusing the beam to a diameter ranging from a few micrometers down to a few tens of nanometers, depending on the required beam intensity and spatial resolution. Three-dimensional (3D) imaging by tomography is obtained from proton transmission (STIM: Scanning Transmission Ion Microscopy) and/or X-ray emission (PIXE: Particle Induced X-ray Emission). In these experiments, the samples are dehydrated for under vacuum analysis. In situ quantification of nanoparticles has been carried out at CENBG in the frame of nanotoxicology studies, on cells and small organisms used as biological models, especially on Caenorhabditis elegans (C. elegans) nematodes. Tomography experiments reveal the distribution of mass density and chemical content (in g.cm−3) within the analyzed volume. These density values are obtained using an inversion algorithm. To investigate the effect of this data reduction process, we defined different numerical phantoms, including a (dehydrated) C. elegans phantom whose geometry and density were derived from experimental data. A Monte Carlo simulation based on the Geant4 toolkit was developed. Using different simulation and reconstruction conditions, we compared the resulting tomographic images to the initial numerical reference phantom. A study of the relative error between the reconstructed and the reference images lead to the result that 20 protons per shot can be considered as an optimal number for 3D STIM imaging. Preliminary results for PIXE tomography are also presented, showing the interest of such numerical phantoms to produce reference data for future studies on X-ray signal attenuation in thick samples.</description><identifier>ISSN: 1120-1797</identifier><identifier>EISSN: 1724-191X</identifier><identifier>DOI: 10.1016/j.ejmp.2019.08.022</identifier><identifier>PMID: 31494371</identifier><language>eng</language><publisher>Italy: Elsevier Ltd</publisher><subject>Animals ; Caenorhabditis elegans ; Chemical Sciences ; Geant4 simulation ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Material chemistry ; Microscopy ; Monte Carlo Method ; Phantoms, Imaging ; PIXE tomography ; Protons ; STIM tomography</subject><ispartof>Physica medica, 2019-09, Vol.65, p.172-180</ispartof><rights>2019 Associazione Italiana di Fisica Medica</rights><rights>Copyright © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-ea24a4d67cc1dae4f7ae32a2708b2a3c2ab14e81a02d589544ac2e885928d863</citedby><cites>FETCH-LOGICAL-c434t-ea24a4d67cc1dae4f7ae32a2708b2a3c2ab14e81a02d589544ac2e885928d863</cites><orcidid>0000-0001-8863-8225 ; 0000-0003-4267-492X ; 0000-0002-3401-8351 ; 0000-0002-0619-2053 ; 0000-0001-6180-8925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31494371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02281684$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Michelet, Claire</creatorcontrib><creatorcontrib>Li, Zhuxin</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Incerti, Sébastien</creatorcontrib><creatorcontrib>Desbarats, Pascal</creatorcontrib><creatorcontrib>Giovannelli, Jean-François</creatorcontrib><creatorcontrib>Barberet, Philippe</creatorcontrib><creatorcontrib>Delville, Marie-Hélène</creatorcontrib><creatorcontrib>Gordillo, Nuria</creatorcontrib><creatorcontrib>Devès, Guillaume</creatorcontrib><creatorcontrib>Seznec, Hervé</creatorcontrib><title>A Geant4 simulation for three-dimensional proton imaging of microscopic samples</title><title>Physica medica</title><addtitle>Phys Med</addtitle><description>•A Geant4 simulation was developed for three-dimensional proton micro-imaging.•Several phantoms are available, including a Caenorhabditis elegans.•3D mass density distribution was obtained from proton transmission microtomography.•Element content distribution was obtained from X-ray emission microtomography.•20 primary protons per shot is an optimal number for transmission microtomography. Proton imaging can be carried out on microscopic samples by focusing the beam to a diameter ranging from a few micrometers down to a few tens of nanometers, depending on the required beam intensity and spatial resolution. Three-dimensional (3D) imaging by tomography is obtained from proton transmission (STIM: Scanning Transmission Ion Microscopy) and/or X-ray emission (PIXE: Particle Induced X-ray Emission). In these experiments, the samples are dehydrated for under vacuum analysis. In situ quantification of nanoparticles has been carried out at CENBG in the frame of nanotoxicology studies, on cells and small organisms used as biological models, especially on Caenorhabditis elegans (C. elegans) nematodes. Tomography experiments reveal the distribution of mass density and chemical content (in g.cm−3) within the analyzed volume. These density values are obtained using an inversion algorithm. To investigate the effect of this data reduction process, we defined different numerical phantoms, including a (dehydrated) C. elegans phantom whose geometry and density were derived from experimental data. A Monte Carlo simulation based on the Geant4 toolkit was developed. Using different simulation and reconstruction conditions, we compared the resulting tomographic images to the initial numerical reference phantom. A study of the relative error between the reconstructed and the reference images lead to the result that 20 protons per shot can be considered as an optimal number for 3D STIM imaging. Preliminary results for PIXE tomography are also presented, showing the interest of such numerical phantoms to produce reference data for future studies on X-ray signal attenuation in thick samples.</description><subject>Animals</subject><subject>Caenorhabditis elegans</subject><subject>Chemical Sciences</subject><subject>Geant4 simulation</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional</subject><subject>Material chemistry</subject><subject>Microscopy</subject><subject>Monte Carlo Method</subject><subject>Phantoms, Imaging</subject><subject>PIXE tomography</subject><subject>Protons</subject><subject>STIM tomography</subject><issn>1120-1797</issn><issn>1724-191X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq0KVCjtC_RQ5QiHpJ6Js3EkLqsVhUorceHAzZp1JuBVEgc7i8Tb42gpx55sjb_5x_MJ8RNkARJWv_cF74epQAlNIXUhEb-Ic6hR5dDA40m6A8oc6qY-E99i3EtZIlbVV3FWgmpUWcO5uF9nt0zjrLLohkNPs_Nj1vmQzc-BOW_dwGNMNeqzKfg5PbqBntz4lPkuG5wNPlo_OZtFGqae43dx2lEf-cfHeSEe_tw8bO7y7f3t3816m1tVqjlnQkWqXdXWQkusupq4RMJa6h1SaZF2oFgDSWwr3VRKkUXWumpQt3pVXoirY-wz9WYK6U_hzXhy5m69NUstydCw0uoVEnt5ZNMCLweOsxlctNz3NLI_RJPIuoJSV5hQPKLLXjFw95kN0izOzd4szs3i3Ei9jElNvz7yD7uB28-Wf5ITcH0EOAl5dRxMtI5Hy60LbGfTeve__HfhQZIx</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Michelet, Claire</creator><creator>Li, Zhuxin</creator><creator>Yang, Wen</creator><creator>Incerti, Sébastien</creator><creator>Desbarats, Pascal</creator><creator>Giovannelli, Jean-François</creator><creator>Barberet, Philippe</creator><creator>Delville, Marie-Hélène</creator><creator>Gordillo, Nuria</creator><creator>Devès, Guillaume</creator><creator>Seznec, Hervé</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8863-8225</orcidid><orcidid>https://orcid.org/0000-0003-4267-492X</orcidid><orcidid>https://orcid.org/0000-0002-3401-8351</orcidid><orcidid>https://orcid.org/0000-0002-0619-2053</orcidid><orcidid>https://orcid.org/0000-0001-6180-8925</orcidid></search><sort><creationdate>201909</creationdate><title>A Geant4 simulation for three-dimensional proton imaging of microscopic samples</title><author>Michelet, Claire ; Li, Zhuxin ; Yang, Wen ; Incerti, Sébastien ; Desbarats, Pascal ; Giovannelli, Jean-François ; Barberet, Philippe ; Delville, Marie-Hélène ; Gordillo, Nuria ; Devès, Guillaume ; Seznec, Hervé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-ea24a4d67cc1dae4f7ae32a2708b2a3c2ab14e81a02d589544ac2e885928d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans</topic><topic>Chemical Sciences</topic><topic>Geant4 simulation</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional</topic><topic>Material chemistry</topic><topic>Microscopy</topic><topic>Monte Carlo Method</topic><topic>Phantoms, Imaging</topic><topic>PIXE tomography</topic><topic>Protons</topic><topic>STIM tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michelet, Claire</creatorcontrib><creatorcontrib>Li, Zhuxin</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Incerti, Sébastien</creatorcontrib><creatorcontrib>Desbarats, Pascal</creatorcontrib><creatorcontrib>Giovannelli, Jean-François</creatorcontrib><creatorcontrib>Barberet, Philippe</creatorcontrib><creatorcontrib>Delville, Marie-Hélène</creatorcontrib><creatorcontrib>Gordillo, Nuria</creatorcontrib><creatorcontrib>Devès, Guillaume</creatorcontrib><creatorcontrib>Seznec, Hervé</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physica medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michelet, Claire</au><au>Li, Zhuxin</au><au>Yang, Wen</au><au>Incerti, Sébastien</au><au>Desbarats, Pascal</au><au>Giovannelli, Jean-François</au><au>Barberet, Philippe</au><au>Delville, Marie-Hélène</au><au>Gordillo, Nuria</au><au>Devès, Guillaume</au><au>Seznec, Hervé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Geant4 simulation for three-dimensional proton imaging of microscopic samples</atitle><jtitle>Physica medica</jtitle><addtitle>Phys Med</addtitle><date>2019-09</date><risdate>2019</risdate><volume>65</volume><spage>172</spage><epage>180</epage><pages>172-180</pages><issn>1120-1797</issn><eissn>1724-191X</eissn><abstract>•A Geant4 simulation was developed for three-dimensional proton micro-imaging.•Several phantoms are available, including a Caenorhabditis elegans.•3D mass density distribution was obtained from proton transmission microtomography.•Element content distribution was obtained from X-ray emission microtomography.•20 primary protons per shot is an optimal number for transmission microtomography. Proton imaging can be carried out on microscopic samples by focusing the beam to a diameter ranging from a few micrometers down to a few tens of nanometers, depending on the required beam intensity and spatial resolution. Three-dimensional (3D) imaging by tomography is obtained from proton transmission (STIM: Scanning Transmission Ion Microscopy) and/or X-ray emission (PIXE: Particle Induced X-ray Emission). In these experiments, the samples are dehydrated for under vacuum analysis. In situ quantification of nanoparticles has been carried out at CENBG in the frame of nanotoxicology studies, on cells and small organisms used as biological models, especially on Caenorhabditis elegans (C. elegans) nematodes. Tomography experiments reveal the distribution of mass density and chemical content (in g.cm−3) within the analyzed volume. These density values are obtained using an inversion algorithm. To investigate the effect of this data reduction process, we defined different numerical phantoms, including a (dehydrated) C. elegans phantom whose geometry and density were derived from experimental data. A Monte Carlo simulation based on the Geant4 toolkit was developed. Using different simulation and reconstruction conditions, we compared the resulting tomographic images to the initial numerical reference phantom. A study of the relative error between the reconstructed and the reference images lead to the result that 20 protons per shot can be considered as an optimal number for 3D STIM imaging. Preliminary results for PIXE tomography are also presented, showing the interest of such numerical phantoms to produce reference data for future studies on X-ray signal attenuation in thick samples.</abstract><cop>Italy</cop><pub>Elsevier Ltd</pub><pmid>31494371</pmid><doi>10.1016/j.ejmp.2019.08.022</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8863-8225</orcidid><orcidid>https://orcid.org/0000-0003-4267-492X</orcidid><orcidid>https://orcid.org/0000-0002-3401-8351</orcidid><orcidid>https://orcid.org/0000-0002-0619-2053</orcidid><orcidid>https://orcid.org/0000-0001-6180-8925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1120-1797
ispartof Physica medica, 2019-09, Vol.65, p.172-180
issn 1120-1797
1724-191X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02281684v1
source ScienceDirect Freedom Collection
subjects Animals
Caenorhabditis elegans
Chemical Sciences
Geant4 simulation
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Material chemistry
Microscopy
Monte Carlo Method
Phantoms, Imaging
PIXE tomography
Protons
STIM tomography
title A Geant4 simulation for three-dimensional proton imaging of microscopic samples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Geant4%20simulation%20for%20three-dimensional%20proton%20imaging%20of%20microscopic%20samples&rft.jtitle=Physica%20medica&rft.au=Michelet,%20Claire&rft.date=2019-09&rft.volume=65&rft.spage=172&rft.epage=180&rft.pages=172-180&rft.issn=1120-1797&rft.eissn=1724-191X&rft_id=info:doi/10.1016/j.ejmp.2019.08.022&rft_dat=%3Cproquest_hal_p%3E2287513852%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-ea24a4d67cc1dae4f7ae32a2708b2a3c2ab14e81a02d589544ac2e885928d863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287513852&rft_id=info:pmid/31494371&rfr_iscdi=true