Loading…

An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles

The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints....

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2019-10, Vol.15 (41), p.832-8312
Main Authors: Gaillard, Thibaut, George, Matthieu, Gastaldi, Emmanuelle, Nallet, Frdric, Fabre, Pascale
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193
cites cdi_FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193
container_end_page 8312
container_issue 41
container_start_page 832
container_title Soft matter
container_volume 15
creator Gaillard, Thibaut
George, Matthieu
Gastaldi, Emmanuelle
Nallet, Frdric
Fabre, Pascale
description The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded in situ . This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media. Degradation of a semi-crystalline polymer, via an enzymatic erosion experiment, evidences microstructure dependent surface patterns and microparticles release. A generic geometric model accounts for the mass loss and predicts a critical release size.
doi_str_mv 10.1039/c9sm01482a
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02285199v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296664626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoso-Lx4FwpeVKjm1TyOy-ILVjyo4C2k3VmttE3NtOIe_c_NuusKnpKZ_OabfHxJckjJOSXcXJQGG0KFZm4j2aFKiExqoTfXd_68newivhHCtaByJ_katSl8dhCqBtre1alrp2n_Cj5AX5Wxxn6YzlM_WzRTCB4r3y5KhKbKyjDHOFRXLaSdr-cNBPxVSHEoEN6HKJu-QAvB9avRpiqD71yIC2rA_WRr5mqEg9W5lzxdXT6Ob7LJ_fXteDTJSsFon0kpikKomRPO5VQIUzhWEK0VsPjADc2VigzksuCaTMGwnBRKcKpLoxU1fC85Xeq-utp20a8Lc-tdZW9GE7voEcZ0To35oJE9WbJd8NEB9rapsIS6di34AS1jRsZlksmIHv9D3_wQ2ujEMk6UElIrFqmzJRWdIwaYrX9AiV0kZ8fm4e4nuVGEj5ZwwHLN_SXLvwEAOpX3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307746872</pqid></control><display><type>article</type><title>An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Gaillard, Thibaut ; George, Matthieu ; Gastaldi, Emmanuelle ; Nallet, Frdric ; Fabre, Pascale</creator><creatorcontrib>Gaillard, Thibaut ; George, Matthieu ; Gastaldi, Emmanuelle ; Nallet, Frdric ; Fabre, Pascale</creatorcontrib><description>The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded in situ . This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media. Degradation of a semi-crystalline polymer, via an enzymatic erosion experiment, evidences microstructure dependent surface patterns and microparticles release. A generic geometric model accounts for the mass loss and predicts a critical release size.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm01482a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accelerated erosion ; Condensed Matter ; Crack propagation ; Crystal structure ; Crystallinity ; Degradation ; Erosion rates ; Fracture mechanics ; Heterogeneity ; Kinetics ; Materials Science ; Mechanical properties ; Microparticles ; Microplastics ; Organic chemistry ; Pattern formation ; Physics ; Plastic debris ; Polymers ; Soft Condensed Matter ; Spherulites</subject><ispartof>Soft matter, 2019-10, Vol.15 (41), p.832-8312</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193</citedby><cites>FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193</cites><orcidid>0000-0003-0439-779X ; 0000-0001-7121-6325 ; 0000-0003-0628-8765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02285199$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaillard, Thibaut</creatorcontrib><creatorcontrib>George, Matthieu</creatorcontrib><creatorcontrib>Gastaldi, Emmanuelle</creatorcontrib><creatorcontrib>Nallet, Frdric</creatorcontrib><creatorcontrib>Fabre, Pascale</creatorcontrib><title>An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles</title><title>Soft matter</title><description>The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded in situ . This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media. Degradation of a semi-crystalline polymer, via an enzymatic erosion experiment, evidences microstructure dependent surface patterns and microparticles release. A generic geometric model accounts for the mass loss and predicts a critical release size.</description><subject>Accelerated erosion</subject><subject>Condensed Matter</subject><subject>Crack propagation</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Degradation</subject><subject>Erosion rates</subject><subject>Fracture mechanics</subject><subject>Heterogeneity</subject><subject>Kinetics</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microparticles</subject><subject>Microplastics</subject><subject>Organic chemistry</subject><subject>Pattern formation</subject><subject>Physics</subject><subject>Plastic debris</subject><subject>Polymers</subject><subject>Soft Condensed Matter</subject><subject>Spherulites</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkctLxDAQxoso-Lx4FwpeVKjm1TyOy-ILVjyo4C2k3VmttE3NtOIe_c_NuusKnpKZ_OabfHxJckjJOSXcXJQGG0KFZm4j2aFKiExqoTfXd_68newivhHCtaByJ_katSl8dhCqBtre1alrp2n_Cj5AX5Wxxn6YzlM_WzRTCB4r3y5KhKbKyjDHOFRXLaSdr-cNBPxVSHEoEN6HKJu-QAvB9avRpiqD71yIC2rA_WRr5mqEg9W5lzxdXT6Ob7LJ_fXteDTJSsFon0kpikKomRPO5VQIUzhWEK0VsPjADc2VigzksuCaTMGwnBRKcKpLoxU1fC85Xeq-utp20a8Lc-tdZW9GE7voEcZ0To35oJE9WbJd8NEB9rapsIS6di34AS1jRsZlksmIHv9D3_wQ2ujEMk6UElIrFqmzJRWdIwaYrX9AiV0kZ8fm4e4nuVGEj5ZwwHLN_SXLvwEAOpX3</recordid><startdate>20191023</startdate><enddate>20191023</enddate><creator>Gaillard, Thibaut</creator><creator>George, Matthieu</creator><creator>Gastaldi, Emmanuelle</creator><creator>Nallet, Frdric</creator><creator>Fabre, Pascale</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0439-779X</orcidid><orcidid>https://orcid.org/0000-0001-7121-6325</orcidid><orcidid>https://orcid.org/0000-0003-0628-8765</orcidid></search><sort><creationdate>20191023</creationdate><title>An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles</title><author>Gaillard, Thibaut ; George, Matthieu ; Gastaldi, Emmanuelle ; Nallet, Frdric ; Fabre, Pascale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerated erosion</topic><topic>Condensed Matter</topic><topic>Crack propagation</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Degradation</topic><topic>Erosion rates</topic><topic>Fracture mechanics</topic><topic>Heterogeneity</topic><topic>Kinetics</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microparticles</topic><topic>Microplastics</topic><topic>Organic chemistry</topic><topic>Pattern formation</topic><topic>Physics</topic><topic>Plastic debris</topic><topic>Polymers</topic><topic>Soft Condensed Matter</topic><topic>Spherulites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaillard, Thibaut</creatorcontrib><creatorcontrib>George, Matthieu</creatorcontrib><creatorcontrib>Gastaldi, Emmanuelle</creatorcontrib><creatorcontrib>Nallet, Frdric</creatorcontrib><creatorcontrib>Fabre, Pascale</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaillard, Thibaut</au><au>George, Matthieu</au><au>Gastaldi, Emmanuelle</au><au>Nallet, Frdric</au><au>Fabre, Pascale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles</atitle><jtitle>Soft matter</jtitle><date>2019-10-23</date><risdate>2019</risdate><volume>15</volume><issue>41</issue><spage>832</spage><epage>8312</epage><pages>832-8312</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded in situ . This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media. Degradation of a semi-crystalline polymer, via an enzymatic erosion experiment, evidences microstructure dependent surface patterns and microparticles release. A generic geometric model accounts for the mass loss and predicts a critical release size.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9sm01482a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0439-779X</orcidid><orcidid>https://orcid.org/0000-0001-7121-6325</orcidid><orcidid>https://orcid.org/0000-0003-0628-8765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2019-10, Vol.15 (41), p.832-8312
issn 1744-683X
1744-6848
language eng
recordid cdi_hal_primary_oai_HAL_hal_02285199v1
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Accelerated erosion
Condensed Matter
Crack propagation
Crystal structure
Crystallinity
Degradation
Erosion rates
Fracture mechanics
Heterogeneity
Kinetics
Materials Science
Mechanical properties
Microparticles
Microplastics
Organic chemistry
Pattern formation
Physics
Plastic debris
Polymers
Soft Condensed Matter
Spherulites
title An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20and%20theoretical%20study%20of%20the%20erosion%20of%20semi-crystalline%20polymers%20and%20the%20subsequent%20generation%20of%20microparticles&rft.jtitle=Soft%20matter&rft.au=Gaillard,%20Thibaut&rft.date=2019-10-23&rft.volume=15&rft.issue=41&rft.spage=832&rft.epage=8312&rft.pages=832-8312&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm01482a&rft_dat=%3Cproquest_hal_p%3E2296664626%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307746872&rft_id=info:pmid/&rfr_iscdi=true