Loading…
An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles
The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints....
Saved in:
Published in: | Soft matter 2019-10, Vol.15 (41), p.832-8312 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193 |
container_end_page | 8312 |
container_issue | 41 |
container_start_page | 832 |
container_title | Soft matter |
container_volume | 15 |
creator | Gaillard, Thibaut George, Matthieu Gastaldi, Emmanuelle Nallet, Frdric Fabre, Pascale |
description | The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded
in situ
. This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media.
Degradation of a semi-crystalline polymer,
via
an enzymatic erosion experiment, evidences microstructure dependent surface patterns and microparticles release. A generic geometric model accounts for the mass loss and predicts a critical release size. |
doi_str_mv | 10.1039/c9sm01482a |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02285199v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296664626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoso-Lx4FwpeVKjm1TyOy-ILVjyo4C2k3VmttE3NtOIe_c_NuusKnpKZ_OabfHxJckjJOSXcXJQGG0KFZm4j2aFKiExqoTfXd_68newivhHCtaByJ_katSl8dhCqBtre1alrp2n_Cj5AX5Wxxn6YzlM_WzRTCB4r3y5KhKbKyjDHOFRXLaSdr-cNBPxVSHEoEN6HKJu-QAvB9avRpiqD71yIC2rA_WRr5mqEg9W5lzxdXT6Ob7LJ_fXteDTJSsFon0kpikKomRPO5VQIUzhWEK0VsPjADc2VigzksuCaTMGwnBRKcKpLoxU1fC85Xeq-utp20a8Lc-tdZW9GE7voEcZ0To35oJE9WbJd8NEB9rapsIS6di34AS1jRsZlksmIHv9D3_wQ2ujEMk6UElIrFqmzJRWdIwaYrX9AiV0kZ8fm4e4nuVGEj5ZwwHLN_SXLvwEAOpX3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307746872</pqid></control><display><type>article</type><title>An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Gaillard, Thibaut ; George, Matthieu ; Gastaldi, Emmanuelle ; Nallet, Frdric ; Fabre, Pascale</creator><creatorcontrib>Gaillard, Thibaut ; George, Matthieu ; Gastaldi, Emmanuelle ; Nallet, Frdric ; Fabre, Pascale</creatorcontrib><description>The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded
in situ
. This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media.
Degradation of a semi-crystalline polymer,
via
an enzymatic erosion experiment, evidences microstructure dependent surface patterns and microparticles release. A generic geometric model accounts for the mass loss and predicts a critical release size.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm01482a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accelerated erosion ; Condensed Matter ; Crack propagation ; Crystal structure ; Crystallinity ; Degradation ; Erosion rates ; Fracture mechanics ; Heterogeneity ; Kinetics ; Materials Science ; Mechanical properties ; Microparticles ; Microplastics ; Organic chemistry ; Pattern formation ; Physics ; Plastic debris ; Polymers ; Soft Condensed Matter ; Spherulites</subject><ispartof>Soft matter, 2019-10, Vol.15 (41), p.832-8312</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193</citedby><cites>FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193</cites><orcidid>0000-0003-0439-779X ; 0000-0001-7121-6325 ; 0000-0003-0628-8765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02285199$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaillard, Thibaut</creatorcontrib><creatorcontrib>George, Matthieu</creatorcontrib><creatorcontrib>Gastaldi, Emmanuelle</creatorcontrib><creatorcontrib>Nallet, Frdric</creatorcontrib><creatorcontrib>Fabre, Pascale</creatorcontrib><title>An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles</title><title>Soft matter</title><description>The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded
in situ
. This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media.
Degradation of a semi-crystalline polymer,
via
an enzymatic erosion experiment, evidences microstructure dependent surface patterns and microparticles release. A generic geometric model accounts for the mass loss and predicts a critical release size.</description><subject>Accelerated erosion</subject><subject>Condensed Matter</subject><subject>Crack propagation</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Degradation</subject><subject>Erosion rates</subject><subject>Fracture mechanics</subject><subject>Heterogeneity</subject><subject>Kinetics</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microparticles</subject><subject>Microplastics</subject><subject>Organic chemistry</subject><subject>Pattern formation</subject><subject>Physics</subject><subject>Plastic debris</subject><subject>Polymers</subject><subject>Soft Condensed Matter</subject><subject>Spherulites</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkctLxDAQxoso-Lx4FwpeVKjm1TyOy-ILVjyo4C2k3VmttE3NtOIe_c_NuusKnpKZ_OabfHxJckjJOSXcXJQGG0KFZm4j2aFKiExqoTfXd_68newivhHCtaByJ_katSl8dhCqBtre1alrp2n_Cj5AX5Wxxn6YzlM_WzRTCB4r3y5KhKbKyjDHOFRXLaSdr-cNBPxVSHEoEN6HKJu-QAvB9avRpiqD71yIC2rA_WRr5mqEg9W5lzxdXT6Ob7LJ_fXteDTJSsFon0kpikKomRPO5VQIUzhWEK0VsPjADc2VigzksuCaTMGwnBRKcKpLoxU1fC85Xeq-utp20a8Lc-tdZW9GE7voEcZ0To35oJE9WbJd8NEB9rapsIS6di34AS1jRsZlksmIHv9D3_wQ2ujEMk6UElIrFqmzJRWdIwaYrX9AiV0kZ8fm4e4nuVGEj5ZwwHLN_SXLvwEAOpX3</recordid><startdate>20191023</startdate><enddate>20191023</enddate><creator>Gaillard, Thibaut</creator><creator>George, Matthieu</creator><creator>Gastaldi, Emmanuelle</creator><creator>Nallet, Frdric</creator><creator>Fabre, Pascale</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0439-779X</orcidid><orcidid>https://orcid.org/0000-0001-7121-6325</orcidid><orcidid>https://orcid.org/0000-0003-0628-8765</orcidid></search><sort><creationdate>20191023</creationdate><title>An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles</title><author>Gaillard, Thibaut ; George, Matthieu ; Gastaldi, Emmanuelle ; Nallet, Frdric ; Fabre, Pascale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerated erosion</topic><topic>Condensed Matter</topic><topic>Crack propagation</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Degradation</topic><topic>Erosion rates</topic><topic>Fracture mechanics</topic><topic>Heterogeneity</topic><topic>Kinetics</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microparticles</topic><topic>Microplastics</topic><topic>Organic chemistry</topic><topic>Pattern formation</topic><topic>Physics</topic><topic>Plastic debris</topic><topic>Polymers</topic><topic>Soft Condensed Matter</topic><topic>Spherulites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaillard, Thibaut</creatorcontrib><creatorcontrib>George, Matthieu</creatorcontrib><creatorcontrib>Gastaldi, Emmanuelle</creatorcontrib><creatorcontrib>Nallet, Frdric</creatorcontrib><creatorcontrib>Fabre, Pascale</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaillard, Thibaut</au><au>George, Matthieu</au><au>Gastaldi, Emmanuelle</au><au>Nallet, Frdric</au><au>Fabre, Pascale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles</atitle><jtitle>Soft matter</jtitle><date>2019-10-23</date><risdate>2019</risdate><volume>15</volume><issue>41</issue><spage>832</spage><epage>8312</epage><pages>832-8312</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The increase of plastics and microplastics in the environment is a major environmental challenge. Still, little is known about the degradation kinetics of macroplastics into smaller particles, under the joint actions of micro-organisms and physico-chemical factors, like UV or mechanical constraints. In order to gain insight into (bio)-degradation in various media, we perform accelerated erosion experiments by using a well-known enzymatic system. We show that the microstructure of semi-crystalline polymers plays a crucial role in the pattern formation at their surface. For the first time, the release of fragments of micrometric size is evidenced, through a mechanism that does not involve fracture propagation. A geometric erosion model allows a quantitative understanding of erosion rates and surface patterns, and provides a critical heterogeneity size, parting two types of behavior: spherulites either released, or eroded
in situ
. This new geometric approach could constitute a useful tool to predict the erosion kinetics and micro-particle generation in various media.
Degradation of a semi-crystalline polymer,
via
an enzymatic erosion experiment, evidences microstructure dependent surface patterns and microparticles release. A generic geometric model accounts for the mass loss and predicts a critical release size.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9sm01482a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0439-779X</orcidid><orcidid>https://orcid.org/0000-0001-7121-6325</orcidid><orcidid>https://orcid.org/0000-0003-0628-8765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2019-10, Vol.15 (41), p.832-8312 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02285199v1 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Accelerated erosion Condensed Matter Crack propagation Crystal structure Crystallinity Degradation Erosion rates Fracture mechanics Heterogeneity Kinetics Materials Science Mechanical properties Microparticles Microplastics Organic chemistry Pattern formation Physics Plastic debris Polymers Soft Condensed Matter Spherulites |
title | An experimental and theoretical study of the erosion of semi-crystalline polymers and the subsequent generation of microparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20and%20theoretical%20study%20of%20the%20erosion%20of%20semi-crystalline%20polymers%20and%20the%20subsequent%20generation%20of%20microparticles&rft.jtitle=Soft%20matter&rft.au=Gaillard,%20Thibaut&rft.date=2019-10-23&rft.volume=15&rft.issue=41&rft.spage=832&rft.epage=8312&rft.pages=832-8312&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm01482a&rft_dat=%3Cproquest_hal_p%3E2296664626%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-664bb47fa4aa51449ba2b0887e24bb391577664e56b380de9250b74318c987193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307746872&rft_id=info:pmid/&rfr_iscdi=true |