Loading…

Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review

[Display omitted] •Internal colonization and current density are analysed with respect to the pore sizes.•Small pore sizes, below 10 µm, produced the lowest current density.•Pore sizes ranging from 10 to 100 µm showed pore clogging by the biofilm.•Pores from 100 to 500 µm allowed internal colonizati...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2019-10, Vol.289, p.121641-121641, Article 121641
Main Authors: Chong, Poehere, Erable, Benjamin, Bergel, Alain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c553t-9d14c0609e49df49c77f85ca05b10e7e140133ddcb40f02cf9c0b1e4c2a03513
cites cdi_FETCH-LOGICAL-c553t-9d14c0609e49df49c77f85ca05b10e7e140133ddcb40f02cf9c0b1e4c2a03513
container_end_page 121641
container_issue
container_start_page 121641
container_title Bioresource technology
container_volume 289
creator Chong, Poehere
Erable, Benjamin
Bergel, Alain
description [Display omitted] •Internal colonization and current density are analysed with respect to the pore sizes.•Small pore sizes, below 10 µm, produced the lowest current density.•Pore sizes ranging from 10 to 100 µm showed pore clogging by the biofilm.•Pores from 100 to 500 µm allowed internal colonization but limited mass transport.•Pores sizes at millimetre(s) level produced the highest current density. Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.
doi_str_mv 10.1016/j.biortech.2019.121641
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02285347v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852419308715</els_id><sourcerecordid>2257707464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-9d14c0609e49df49c77f85ca05b10e7e140133ddcb40f02cf9c0b1e4c2a03513</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EotvCV6h8hEOW8Z_EG06sqkKRVuLSu-XYY9arJF7spKh8ehyl7bUnW0_vzWjej5BrBlsGrPly2nYhpgntccuBtVvGWSPZG7JhOyUq3qrmLdlA20C1q7m8IJc5nwBAMMXfkwvBRPlDsyG_b71HO9Ho6TkmpDn8QxpHOh2R2jklHCd6TtHNFh3tHqmoXBhwzCGOpl8icc50CDbFLhTBjNFh_kr31KYwBVukhA8B_34g77zpM358eq_I_ffb-5u76vDrx8-b_aGydS2mqnVMWmigRdk6L1urlN_V1kDdMUCFTAITwjnbSfDArW8tdAyl5QZEzcQV-byOPZpen1MYTHrU0QR9tz_oRQPOd7WQ6mHxflq95b4_M-ZJDyFb7HszYrlKc14rBUo2slib1VruzDmhf5nNQC889Ek_89ALD73yKMHrpx1zN6B7iT0DKIZvqwFLKaWopLMNOJa2QypctIvhtR3_ARTAnpY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257707464</pqid></control><display><type>article</type><title>Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Chong, Poehere ; Erable, Benjamin ; Bergel, Alain</creator><creatorcontrib>Chong, Poehere ; Erable, Benjamin ; Bergel, Alain</creatorcontrib><description>[Display omitted] •Internal colonization and current density are analysed with respect to the pore sizes.•Small pore sizes, below 10 µm, produced the lowest current density.•Pore sizes ranging from 10 to 100 µm showed pore clogging by the biofilm.•Pores from 100 to 500 µm allowed internal colonization but limited mass transport.•Pores sizes at millimetre(s) level produced the highest current density. Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2019.121641</identifier><identifier>PMID: 31300306</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bioanode ; Bioelectrochemical system ; Chemical and Process Engineering ; Chemical engineering ; Chemical Sciences ; Electroactive biofilm ; Engineering Sciences ; Microbial fuel cell ; Porosity</subject><ispartof>Bioresource technology, 2019-10, Vol.289, p.121641-121641, Article 121641</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-9d14c0609e49df49c77f85ca05b10e7e140133ddcb40f02cf9c0b1e4c2a03513</citedby><cites>FETCH-LOGICAL-c553t-9d14c0609e49df49c77f85ca05b10e7e140133ddcb40f02cf9c0b1e4c2a03513</cites><orcidid>0000-0002-0637-1828 ; 0000-0002-5332-9622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31300306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02285347$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chong, Poehere</creatorcontrib><creatorcontrib>Erable, Benjamin</creatorcontrib><creatorcontrib>Bergel, Alain</creatorcontrib><title>Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •Internal colonization and current density are analysed with respect to the pore sizes.•Small pore sizes, below 10 µm, produced the lowest current density.•Pore sizes ranging from 10 to 100 µm showed pore clogging by the biofilm.•Pores from 100 to 500 µm allowed internal colonization but limited mass transport.•Pores sizes at millimetre(s) level produced the highest current density. Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.</description><subject>Bioanode</subject><subject>Bioelectrochemical system</subject><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Electroactive biofilm</subject><subject>Engineering Sciences</subject><subject>Microbial fuel cell</subject><subject>Porosity</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EotvCV6h8hEOW8Z_EG06sqkKRVuLSu-XYY9arJF7spKh8ehyl7bUnW0_vzWjej5BrBlsGrPly2nYhpgntccuBtVvGWSPZG7JhOyUq3qrmLdlA20C1q7m8IJc5nwBAMMXfkwvBRPlDsyG_b71HO9Ho6TkmpDn8QxpHOh2R2jklHCd6TtHNFh3tHqmoXBhwzCGOpl8icc50CDbFLhTBjNFh_kr31KYwBVukhA8B_34g77zpM358eq_I_ffb-5u76vDrx8-b_aGydS2mqnVMWmigRdk6L1urlN_V1kDdMUCFTAITwjnbSfDArW8tdAyl5QZEzcQV-byOPZpen1MYTHrU0QR9tz_oRQPOd7WQ6mHxflq95b4_M-ZJDyFb7HszYrlKc14rBUo2slib1VruzDmhf5nNQC889Ek_89ALD73yKMHrpx1zN6B7iT0DKIZvqwFLKaWopLMNOJa2QypctIvhtR3_ARTAnpY</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Chong, Poehere</creator><creator>Erable, Benjamin</creator><creator>Bergel, Alain</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0637-1828</orcidid><orcidid>https://orcid.org/0000-0002-5332-9622</orcidid></search><sort><creationdate>20191001</creationdate><title>Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review</title><author>Chong, Poehere ; Erable, Benjamin ; Bergel, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-9d14c0609e49df49c77f85ca05b10e7e140133ddcb40f02cf9c0b1e4c2a03513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bioanode</topic><topic>Bioelectrochemical system</topic><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Electroactive biofilm</topic><topic>Engineering Sciences</topic><topic>Microbial fuel cell</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Poehere</creatorcontrib><creatorcontrib>Erable, Benjamin</creatorcontrib><creatorcontrib>Bergel, Alain</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chong, Poehere</au><au>Erable, Benjamin</au><au>Bergel, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>289</volume><spage>121641</spage><epage>121641</epage><pages>121641-121641</pages><artnum>121641</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •Internal colonization and current density are analysed with respect to the pore sizes.•Small pore sizes, below 10 µm, produced the lowest current density.•Pore sizes ranging from 10 to 100 µm showed pore clogging by the biofilm.•Pores from 100 to 500 µm allowed internal colonization but limited mass transport.•Pores sizes at millimetre(s) level produced the highest current density. Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31300306</pmid><doi>10.1016/j.biortech.2019.121641</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0637-1828</orcidid><orcidid>https://orcid.org/0000-0002-5332-9622</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2019-10, Vol.289, p.121641-121641, Article 121641
issn 0960-8524
1873-2976
language eng
recordid cdi_hal_primary_oai_HAL_hal_02285347v1
source ScienceDirect Freedom Collection 2022-2024
subjects Bioanode
Bioelectrochemical system
Chemical and Process Engineering
Chemical engineering
Chemical Sciences
Electroactive biofilm
Engineering Sciences
Microbial fuel cell
Porosity
title Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20pore%20size%20on%20the%20current%20produced%20by%203-dimensional%20porous%20microbial%20anodes:%20A%20critical%20review&rft.jtitle=Bioresource%20technology&rft.au=Chong,%20Poehere&rft.date=2019-10-01&rft.volume=289&rft.spage=121641&rft.epage=121641&rft.pages=121641-121641&rft.artnum=121641&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2019.121641&rft_dat=%3Cproquest_hal_p%3E2257707464%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c553t-9d14c0609e49df49c77f85ca05b10e7e140133ddcb40f02cf9c0b1e4c2a03513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2257707464&rft_id=info:pmid/31300306&rfr_iscdi=true