Loading…
Convergence of a class of nonlinear time delays reaction-diffusion equations
Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic h...
Saved in:
Published in: | Nonlinear differential equations and applications 2020, Vol.27 (2), Article 20 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Nonlinear differential equations and applications |
container_volume | 27 |
creator | Anza Hafsa, Omar Mandallena, Jean Philippe Michaille, Gérard |
description | Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic homogenization theorem is established and applied to vector disease and logistic models. The results illustrate the interplay between the growth rates and the time delays which are mixed in the homogenized model. |
doi_str_mv | 10.1007/s00030-020-0626-y |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02296178v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375936136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIvEiUNgbadOfKwqXlIkLnC2XHtTUqV2ayeV8ve4CoITh9XO7s6MVkPILYUHClA-RgDgkANLJZjIxzMyo0WaJEBxnjAwmsuSsUtyFeMWgJaCyxmpV94dMWzQGcx8k-nMdDrGE3Teda1DHbK-3WFmsdNjzAJq07fe5bZtmiEmlOFh0KdVvCYXje4i3vz0Ofl8fvpYveb1-8vbalnnhkve5w1fV9RSYTUUgnLkqGVZ0IrLwpiK06qkvDK0wMYILYRd2MVaC4423a1FzefkfvL90p3ah3anw6i8btXrslanHTAmBS2rI03cu4m7D_4wYOzV1g_BpfcU4-VC8vSBSCw6sUzwMQZsfm0pqFPAago4OadKAasxadikiYnrNhj-nP8XfQMeHH2p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375936136</pqid></control><display><type>article</type><title>Convergence of a class of nonlinear time delays reaction-diffusion equations</title><source>Springer Nature</source><creator>Anza Hafsa, Omar ; Mandallena, Jean Philippe ; Michaille, Gérard</creator><creatorcontrib>Anza Hafsa, Omar ; Mandallena, Jean Philippe ; Michaille, Gérard</creatorcontrib><description>Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic homogenization theorem is established and applied to vector disease and logistic models. The results illustrate the interplay between the growth rates and the time delays which are mixed in the homogenized model.</description><identifier>ISSN: 1021-9722</identifier><identifier>EISSN: 1420-9004</identifier><identifier>DOI: 10.1007/s00030-020-0626-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Convergence ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Reaction-diffusion equations</subject><ispartof>Nonlinear differential equations and applications, 2020, Vol.27 (2), Article 20</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>2020© Springer Nature Switzerland AG 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3</citedby><cites>FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02296178$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Anza Hafsa, Omar</creatorcontrib><creatorcontrib>Mandallena, Jean Philippe</creatorcontrib><creatorcontrib>Michaille, Gérard</creatorcontrib><title>Convergence of a class of nonlinear time delays reaction-diffusion equations</title><title>Nonlinear differential equations and applications</title><addtitle>Nonlinear Differ. Equ. Appl</addtitle><description>Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic homogenization theorem is established and applied to vector disease and logistic models. The results illustrate the interplay between the growth rates and the time delays which are mixed in the homogenized model.</description><subject>Analysis</subject><subject>Convergence</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Reaction-diffusion equations</subject><issn>1021-9722</issn><issn>1420-9004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcIvEiUNgbadOfKwqXlIkLnC2XHtTUqV2ayeV8ve4CoITh9XO7s6MVkPILYUHClA-RgDgkANLJZjIxzMyo0WaJEBxnjAwmsuSsUtyFeMWgJaCyxmpV94dMWzQGcx8k-nMdDrGE3Teda1DHbK-3WFmsdNjzAJq07fe5bZtmiEmlOFh0KdVvCYXje4i3vz0Ofl8fvpYveb1-8vbalnnhkve5w1fV9RSYTUUgnLkqGVZ0IrLwpiK06qkvDK0wMYILYRd2MVaC4423a1FzefkfvL90p3ah3anw6i8btXrslanHTAmBS2rI03cu4m7D_4wYOzV1g_BpfcU4-VC8vSBSCw6sUzwMQZsfm0pqFPAago4OadKAasxadikiYnrNhj-nP8XfQMeHH2p</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Anza Hafsa, Omar</creator><creator>Mandallena, Jean Philippe</creator><creator>Michaille, Gérard</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2020</creationdate><title>Convergence of a class of nonlinear time delays reaction-diffusion equations</title><author>Anza Hafsa, Omar ; Mandallena, Jean Philippe ; Michaille, Gérard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Convergence</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Reaction-diffusion equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anza Hafsa, Omar</creatorcontrib><creatorcontrib>Mandallena, Jean Philippe</creatorcontrib><creatorcontrib>Michaille, Gérard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anza Hafsa, Omar</au><au>Mandallena, Jean Philippe</au><au>Michaille, Gérard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of a class of nonlinear time delays reaction-diffusion equations</atitle><jtitle>Nonlinear differential equations and applications</jtitle><stitle>Nonlinear Differ. Equ. Appl</stitle><date>2020</date><risdate>2020</risdate><volume>27</volume><issue>2</issue><artnum>20</artnum><issn>1021-9722</issn><eissn>1420-9004</eissn><abstract>Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic homogenization theorem is established and applied to vector disease and logistic models. The results illustrate the interplay between the growth rates and the time delays which are mixed in the homogenized model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00030-020-0626-y</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1021-9722 |
ispartof | Nonlinear differential equations and applications, 2020, Vol.27 (2), Article 20 |
issn | 1021-9722 1420-9004 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02296178v1 |
source | Springer Nature |
subjects | Analysis Convergence Mathematical models Mathematics Mathematics and Statistics Nonlinear equations Reaction-diffusion equations |
title | Convergence of a class of nonlinear time delays reaction-diffusion equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20a%20class%20of%20nonlinear%20time%20delays%20reaction-diffusion%20equations&rft.jtitle=Nonlinear%20differential%20equations%20and%20applications&rft.au=Anza%20Hafsa,%20Omar&rft.date=2020&rft.volume=27&rft.issue=2&rft.artnum=20&rft.issn=1021-9722&rft.eissn=1420-9004&rft_id=info:doi/10.1007/s00030-020-0626-y&rft_dat=%3Cproquest_hal_p%3E2375936136%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375936136&rft_id=info:pmid/&rfr_iscdi=true |