Loading…

Convergence of a class of nonlinear time delays reaction-diffusion equations

Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic h...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear differential equations and applications 2020, Vol.27 (2), Article 20
Main Authors: Anza Hafsa, Omar, Mandallena, Jean Philippe, Michaille, Gérard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3
cites cdi_FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3
container_end_page
container_issue 2
container_start_page
container_title Nonlinear differential equations and applications
container_volume 27
creator Anza Hafsa, Omar
Mandallena, Jean Philippe
Michaille, Gérard
description Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic homogenization theorem is established and applied to vector disease and logistic models. The results illustrate the interplay between the growth rates and the time delays which are mixed in the homogenized model.
doi_str_mv 10.1007/s00030-020-0626-y
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02296178v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375936136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIvEiUNgbadOfKwqXlIkLnC2XHtTUqV2ayeV8ve4CoITh9XO7s6MVkPILYUHClA-RgDgkANLJZjIxzMyo0WaJEBxnjAwmsuSsUtyFeMWgJaCyxmpV94dMWzQGcx8k-nMdDrGE3Teda1DHbK-3WFmsdNjzAJq07fe5bZtmiEmlOFh0KdVvCYXje4i3vz0Ofl8fvpYveb1-8vbalnnhkve5w1fV9RSYTUUgnLkqGVZ0IrLwpiK06qkvDK0wMYILYRd2MVaC4423a1FzefkfvL90p3ah3anw6i8btXrslanHTAmBS2rI03cu4m7D_4wYOzV1g_BpfcU4-VC8vSBSCw6sUzwMQZsfm0pqFPAago4OadKAasxadikiYnrNhj-nP8XfQMeHH2p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375936136</pqid></control><display><type>article</type><title>Convergence of a class of nonlinear time delays reaction-diffusion equations</title><source>Springer Nature</source><creator>Anza Hafsa, Omar ; Mandallena, Jean Philippe ; Michaille, Gérard</creator><creatorcontrib>Anza Hafsa, Omar ; Mandallena, Jean Philippe ; Michaille, Gérard</creatorcontrib><description>Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic homogenization theorem is established and applied to vector disease and logistic models. The results illustrate the interplay between the growth rates and the time delays which are mixed in the homogenized model.</description><identifier>ISSN: 1021-9722</identifier><identifier>EISSN: 1420-9004</identifier><identifier>DOI: 10.1007/s00030-020-0626-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Convergence ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Reaction-diffusion equations</subject><ispartof>Nonlinear differential equations and applications, 2020, Vol.27 (2), Article 20</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>2020© Springer Nature Switzerland AG 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3</citedby><cites>FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02296178$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Anza Hafsa, Omar</creatorcontrib><creatorcontrib>Mandallena, Jean Philippe</creatorcontrib><creatorcontrib>Michaille, Gérard</creatorcontrib><title>Convergence of a class of nonlinear time delays reaction-diffusion equations</title><title>Nonlinear differential equations and applications</title><addtitle>Nonlinear Differ. Equ. Appl</addtitle><description>Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic homogenization theorem is established and applied to vector disease and logistic models. The results illustrate the interplay between the growth rates and the time delays which are mixed in the homogenized model.</description><subject>Analysis</subject><subject>Convergence</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Reaction-diffusion equations</subject><issn>1021-9722</issn><issn>1420-9004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcIvEiUNgbadOfKwqXlIkLnC2XHtTUqV2ayeV8ve4CoITh9XO7s6MVkPILYUHClA-RgDgkANLJZjIxzMyo0WaJEBxnjAwmsuSsUtyFeMWgJaCyxmpV94dMWzQGcx8k-nMdDrGE3Teda1DHbK-3WFmsdNjzAJq07fe5bZtmiEmlOFh0KdVvCYXje4i3vz0Ofl8fvpYveb1-8vbalnnhkve5w1fV9RSYTUUgnLkqGVZ0IrLwpiK06qkvDK0wMYILYRd2MVaC4423a1FzefkfvL90p3ah3anw6i8btXrslanHTAmBS2rI03cu4m7D_4wYOzV1g_BpfcU4-VC8vSBSCw6sUzwMQZsfm0pqFPAago4OadKAasxadikiYnrNhj-nP8XfQMeHH2p</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Anza Hafsa, Omar</creator><creator>Mandallena, Jean Philippe</creator><creator>Michaille, Gérard</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2020</creationdate><title>Convergence of a class of nonlinear time delays reaction-diffusion equations</title><author>Anza Hafsa, Omar ; Mandallena, Jean Philippe ; Michaille, Gérard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Convergence</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Reaction-diffusion equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anza Hafsa, Omar</creatorcontrib><creatorcontrib>Mandallena, Jean Philippe</creatorcontrib><creatorcontrib>Michaille, Gérard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anza Hafsa, Omar</au><au>Mandallena, Jean Philippe</au><au>Michaille, Gérard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of a class of nonlinear time delays reaction-diffusion equations</atitle><jtitle>Nonlinear differential equations and applications</jtitle><stitle>Nonlinear Differ. Equ. Appl</stitle><date>2020</date><risdate>2020</risdate><volume>27</volume><issue>2</issue><artnum>20</artnum><issn>1021-9722</issn><eissn>1420-9004</eissn><abstract>Stability under a variational convergence of nonlinear time delays reaction-diffusion equations is discussed. Problems considered cover various models of population dynamics or diseases in heterogeneous environments where delays terms may depend on the space variable. As a consequence a stochastic homogenization theorem is established and applied to vector disease and logistic models. The results illustrate the interplay between the growth rates and the time delays which are mixed in the homogenized model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00030-020-0626-y</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1021-9722
ispartof Nonlinear differential equations and applications, 2020, Vol.27 (2), Article 20
issn 1021-9722
1420-9004
language eng
recordid cdi_hal_primary_oai_HAL_hal_02296178v1
source Springer Nature
subjects Analysis
Convergence
Mathematical models
Mathematics
Mathematics and Statistics
Nonlinear equations
Reaction-diffusion equations
title Convergence of a class of nonlinear time delays reaction-diffusion equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20a%20class%20of%20nonlinear%20time%20delays%20reaction-diffusion%20equations&rft.jtitle=Nonlinear%20differential%20equations%20and%20applications&rft.au=Anza%20Hafsa,%20Omar&rft.date=2020&rft.volume=27&rft.issue=2&rft.artnum=20&rft.issn=1021-9722&rft.eissn=1420-9004&rft_id=info:doi/10.1007/s00030-020-0626-y&rft_dat=%3Cproquest_hal_p%3E2375936136%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-f3b81d16da04613e3ea97418394cc83187138c14efc6a66d5d5ba63ed94cddea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375936136&rft_id=info:pmid/&rfr_iscdi=true