Loading…
Model updating of locally non-linear systems based on multi-harmonic extended constitutive relation error
Improving the fidelity of numerical simulations using available test data is an important activity in the overall process of model verification and validation. While model updating or calibration of linear elastodynamic behaviors has been extensively studied for both academic and industrial applicat...
Saved in:
Published in: | Mechanical systems and signal processing 2011-10, Vol.25 (7), p.2413-2425 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Improving the fidelity of numerical simulations using available test data is an important activity in the overall process of model verification and validation. While model updating or calibration of linear elastodynamic behaviors has been extensively studied for both academic and industrial applications over the past three decades, methodologies capable of treating non-linear dynamics remain relatively immature. The authors propose a novel strategy for updating an important subclass of non-linear models characterized by globally linear stiffness and damping behaviors in the presence of local non-linear effects. The approach combines two well-known methods for structural dynamic analysis. The first is the multi-harmonic balance (MHB) method for solving the non-linear equations of motion of a mechanical system under periodic excitation. This approach has the advantage of being much faster than time domain integration procedures while allowing a wide range of non-linear effects to be taken into account. The second method is the extended constitutive relation error (ECRE) that has been used in the past for error localization and updating of linear elastodynamic models. The proposed updating strategy will be illustrated using academic examples. |
---|---|
ISSN: | 0888-3270 1096-1216 |
DOI: | 10.1016/j.ymssp.2011.03.010 |