Loading…

Model updating of locally non-linear systems based on multi-harmonic extended constitutive relation error

Improving the fidelity of numerical simulations using available test data is an important activity in the overall process of model verification and validation. While model updating or calibration of linear elastodynamic behaviors has been extensively studied for both academic and industrial applicat...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2011-10, Vol.25 (7), p.2413-2425
Main Authors: Isasa, I., Hot, A., Cogan, S., Sadoulet-Reboul, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Improving the fidelity of numerical simulations using available test data is an important activity in the overall process of model verification and validation. While model updating or calibration of linear elastodynamic behaviors has been extensively studied for both academic and industrial applications over the past three decades, methodologies capable of treating non-linear dynamics remain relatively immature. The authors propose a novel strategy for updating an important subclass of non-linear models characterized by globally linear stiffness and damping behaviors in the presence of local non-linear effects. The approach combines two well-known methods for structural dynamic analysis. The first is the multi-harmonic balance (MHB) method for solving the non-linear equations of motion of a mechanical system under periodic excitation. This approach has the advantage of being much faster than time domain integration procedures while allowing a wide range of non-linear effects to be taken into account. The second method is the extended constitutive relation error (ECRE) that has been used in the past for error localization and updating of linear elastodynamic models. The proposed updating strategy will be illustrated using academic examples.
ISSN:0888-3270
1096-1216
DOI:10.1016/j.ymssp.2011.03.010