Loading…
The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation
[Display omitted] •The redox domain of APE1 is required for DNA glycosylase activity stimulation.•APE1 stabilizes enzyme–substrate and stimulates disruption of enzyme–product complexes.•APE1 forms multiprotein oligomers along an undamaged DNA duplex.•APE1 shows DNA length dependence with preferentia...
Saved in:
Published in: | DNA repair 2018-04, Vol.64, p.10-25 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-3231413e38a7908c6da9fdb4a3ed4f35ee1ce239203e3118cf6ff4aabfb8fb353 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-3231413e38a7908c6da9fdb4a3ed4f35ee1ce239203e3118cf6ff4aabfb8fb353 |
container_end_page | 25 |
container_issue | |
container_start_page | 10 |
container_title | DNA repair |
container_volume | 64 |
creator | Kladova, Olga A. Bazlekowa-Karaban, Milena Baconnais, Sonia Piétrement, Olivier Ishchenko, Alexander A. Matkarimov, Bakhyt T. Iakovlev, Danila A. Vasenko, Andrey Fedorova, Olga S. Le Cam, Eric Tudek, Barbara Kuznetsov, Nikita A. Saparbaev, Murat |
description | [Display omitted]
•The redox domain of APE1 is required for DNA glycosylase activity stimulation.•APE1 stabilizes enzyme–substrate and stimulates disruption of enzyme–product complexes.•APE1 forms multiprotein oligomers along an undamaged DNA duplex.•APE1 shows DNA length dependence with preferential cleavage of short DNA duplexes.•APE1 stimulates DNA glycosylases via a conformational selection mechanism.
The base excision repair (BER) pathway consists of sequential action of DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease necessary to remove a damaged base and generate a single-strand break in duplex DNA. Human multifunctional AP endonuclease 1 (APE1, a.k.a. APEX1, HAP-1, or Ref-1) plays essential roles in BER by acting downstream of DNA glycosylases to incise a DNA duplex at AP sites and remove 3′-blocking sugar moieties at DNA strand breaks. Human 8-oxoguanine-DNA glycosylase (OGG1), methyl-CpG-binding domain 4 (MBD4, a.k.a. MED1), and alkyl-N-purine-DNA glycosylase (ANPG, a.k.a. Aag or MPG) excise a variety of damaged bases from DNA. Here we demonstrated that the redox-deficient truncated APE1 protein lacking the first N-terminal 61 amino acid residues (APE1-NΔ61) cannot stimulate DNA glycosylase activities of OGG1, MBD4, and ANPG on duplex DNA substrates. Electron microscopy imaging of APE1–DNA complexes revealed oligomerization of APE1 along the DNA duplex and APE1-mediated DNA bridging followed by DNA aggregation. APE1 polymerizes on both undamaged and damaged DNA in cooperative mode. Association of APE1 with undamaged DNA may enable scanning for damage; however, this event reduces effective concentration of the enzyme and subsequently decreases APE1-catalyzed cleavage rates on long DNA substrates. We propose that APE1 oligomers on DNA induce helix distortions thereby enhancing molecular recognition of DNA lesions by DNA glycosylases via a conformational proofreading/selection mechanism. Thus, APE1-mediated structural deformations of the DNA helix stabilize the enzyme–substrate complex and promote dissociation of human DNA glycosylases from the AP site with a subsequent increase in their turnover rate.
The major human apurinic/apyrimidinic (AP) endonuclease, APE1, stimulates DNA glycosylases by increasing their turnover rate on duplex DNA substrates. At present, the mechanism of the stimulation remains unclear. We report that the redox domain of APE1 is necessary for the active mode of stimulation of DNA glycosylases. Electron microscopy |
doi_str_mv | 10.1016/j.dnarep.2018.02.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02322373v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786417302884</els_id><sourcerecordid>2007980187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-3231413e38a7908c6da9fdb4a3ed4f35ee1ce239203e3118cf6ff4aabfb8fb353</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqXwDxDykUok9Ve-LkirUijSqnAoZ8uxx6xXjh3spNL-exyl7JGLPeN53hlr3qJ4T3BFMGlujpX2MsJUUUy6CtMKY_KiuCR105VtVzcvz3HDL4o3KR0zULdN87q4oD1v65xcFsvjAVAMDlAwaM7xQzlDHK2XDukwSuvXwmEZpUdyWqL1Vt3I6RTtaPWaIPA6-EU5kAkQ-YR2P-_ymXVfHnbotzupkE5uraXZjouTsw3-bfHKSJfg3fN9Vfz6evd4e1_uf3z7frvbl4pzOpeMMsIJA9bJtsedarTsjR64ZKC5YTUAUUBZT3FmCOmUaYzhUg5m6MzAanZVXG99D9KJKf9ZxpMI0or73V6sb5gySlnLnkhmP27sFMOfBdIsRpsUOCc9hCUJinHbd3nXbUb5hqoYUopgzr0JFqs54ig2c8RqTp4i8u6z7MPzhGUYQZ9F_9zIwOcNgLyTJwtRJGXBK9A2gpqFDvb_E_4CED-h3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007980187</pqid></control><display><type>article</type><title>The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kladova, Olga A. ; Bazlekowa-Karaban, Milena ; Baconnais, Sonia ; Piétrement, Olivier ; Ishchenko, Alexander A. ; Matkarimov, Bakhyt T. ; Iakovlev, Danila A. ; Vasenko, Andrey ; Fedorova, Olga S. ; Le Cam, Eric ; Tudek, Barbara ; Kuznetsov, Nikita A. ; Saparbaev, Murat</creator><creatorcontrib>Kladova, Olga A. ; Bazlekowa-Karaban, Milena ; Baconnais, Sonia ; Piétrement, Olivier ; Ishchenko, Alexander A. ; Matkarimov, Bakhyt T. ; Iakovlev, Danila A. ; Vasenko, Andrey ; Fedorova, Olga S. ; Le Cam, Eric ; Tudek, Barbara ; Kuznetsov, Nikita A. ; Saparbaev, Murat</creatorcontrib><description>[Display omitted]
•The redox domain of APE1 is required for DNA glycosylase activity stimulation.•APE1 stabilizes enzyme–substrate and stimulates disruption of enzyme–product complexes.•APE1 forms multiprotein oligomers along an undamaged DNA duplex.•APE1 shows DNA length dependence with preferential cleavage of short DNA duplexes.•APE1 stimulates DNA glycosylases via a conformational selection mechanism.
The base excision repair (BER) pathway consists of sequential action of DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease necessary to remove a damaged base and generate a single-strand break in duplex DNA. Human multifunctional AP endonuclease 1 (APE1, a.k.a. APEX1, HAP-1, or Ref-1) plays essential roles in BER by acting downstream of DNA glycosylases to incise a DNA duplex at AP sites and remove 3′-blocking sugar moieties at DNA strand breaks. Human 8-oxoguanine-DNA glycosylase (OGG1), methyl-CpG-binding domain 4 (MBD4, a.k.a. MED1), and alkyl-N-purine-DNA glycosylase (ANPG, a.k.a. Aag or MPG) excise a variety of damaged bases from DNA. Here we demonstrated that the redox-deficient truncated APE1 protein lacking the first N-terminal 61 amino acid residues (APE1-NΔ61) cannot stimulate DNA glycosylase activities of OGG1, MBD4, and ANPG on duplex DNA substrates. Electron microscopy imaging of APE1–DNA complexes revealed oligomerization of APE1 along the DNA duplex and APE1-mediated DNA bridging followed by DNA aggregation. APE1 polymerizes on both undamaged and damaged DNA in cooperative mode. Association of APE1 with undamaged DNA may enable scanning for damage; however, this event reduces effective concentration of the enzyme and subsequently decreases APE1-catalyzed cleavage rates on long DNA substrates. We propose that APE1 oligomers on DNA induce helix distortions thereby enhancing molecular recognition of DNA lesions by DNA glycosylases via a conformational proofreading/selection mechanism. Thus, APE1-mediated structural deformations of the DNA helix stabilize the enzyme–substrate complex and promote dissociation of human DNA glycosylases from the AP site with a subsequent increase in their turnover rate.
The major human apurinic/apyrimidinic (AP) endonuclease, APE1, stimulates DNA glycosylases by increasing their turnover rate on duplex DNA substrates. At present, the mechanism of the stimulation remains unclear. We report that the redox domain of APE1 is necessary for the active mode of stimulation of DNA glycosylases. Electron microscopy revealed that full-length APE1 oligomerizes on DNA possibly via cooperative binding to DNA. Consequently, APE1 shows DNA length dependence with preferential repair of short DNA duplexes. We propose that APE1-catalyzed oligomerization along DNA induces helix distortions, which in turn enable conformational selection and stimulation of DNA glycosylases. This new biochemical property of APE1 sheds light on the mechanism of redox function and its role in DNA repair.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2018.02.001</identifier><identifier>PMID: 29475157</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>AP endonuclease ; AP lyase ; Apurinic/apyrimidinic site ; Base excision repair ; Biochemistry, Molecular Biology ; DNA glycosylase ; Life Sciences ; Molecular biology ; Oxidative DNA damage ; Redox function</subject><ispartof>DNA repair, 2018-04, Vol.64, p.10-25</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-3231413e38a7908c6da9fdb4a3ed4f35ee1ce239203e3118cf6ff4aabfb8fb353</citedby><cites>FETCH-LOGICAL-c442t-3231413e38a7908c6da9fdb4a3ed4f35ee1ce239203e3118cf6ff4aabfb8fb353</cites><orcidid>0000-0002-0488-8858 ; 0000-0002-0018-7202 ; 0000-0002-4630-1074 ; 0000-0002-6832-6117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29475157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02322373$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kladova, Olga A.</creatorcontrib><creatorcontrib>Bazlekowa-Karaban, Milena</creatorcontrib><creatorcontrib>Baconnais, Sonia</creatorcontrib><creatorcontrib>Piétrement, Olivier</creatorcontrib><creatorcontrib>Ishchenko, Alexander A.</creatorcontrib><creatorcontrib>Matkarimov, Bakhyt T.</creatorcontrib><creatorcontrib>Iakovlev, Danila A.</creatorcontrib><creatorcontrib>Vasenko, Andrey</creatorcontrib><creatorcontrib>Fedorova, Olga S.</creatorcontrib><creatorcontrib>Le Cam, Eric</creatorcontrib><creatorcontrib>Tudek, Barbara</creatorcontrib><creatorcontrib>Kuznetsov, Nikita A.</creatorcontrib><creatorcontrib>Saparbaev, Murat</creatorcontrib><title>The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>[Display omitted]
•The redox domain of APE1 is required for DNA glycosylase activity stimulation.•APE1 stabilizes enzyme–substrate and stimulates disruption of enzyme–product complexes.•APE1 forms multiprotein oligomers along an undamaged DNA duplex.•APE1 shows DNA length dependence with preferential cleavage of short DNA duplexes.•APE1 stimulates DNA glycosylases via a conformational selection mechanism.
The base excision repair (BER) pathway consists of sequential action of DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease necessary to remove a damaged base and generate a single-strand break in duplex DNA. Human multifunctional AP endonuclease 1 (APE1, a.k.a. APEX1, HAP-1, or Ref-1) plays essential roles in BER by acting downstream of DNA glycosylases to incise a DNA duplex at AP sites and remove 3′-blocking sugar moieties at DNA strand breaks. Human 8-oxoguanine-DNA glycosylase (OGG1), methyl-CpG-binding domain 4 (MBD4, a.k.a. MED1), and alkyl-N-purine-DNA glycosylase (ANPG, a.k.a. Aag or MPG) excise a variety of damaged bases from DNA. Here we demonstrated that the redox-deficient truncated APE1 protein lacking the first N-terminal 61 amino acid residues (APE1-NΔ61) cannot stimulate DNA glycosylase activities of OGG1, MBD4, and ANPG on duplex DNA substrates. Electron microscopy imaging of APE1–DNA complexes revealed oligomerization of APE1 along the DNA duplex and APE1-mediated DNA bridging followed by DNA aggregation. APE1 polymerizes on both undamaged and damaged DNA in cooperative mode. Association of APE1 with undamaged DNA may enable scanning for damage; however, this event reduces effective concentration of the enzyme and subsequently decreases APE1-catalyzed cleavage rates on long DNA substrates. We propose that APE1 oligomers on DNA induce helix distortions thereby enhancing molecular recognition of DNA lesions by DNA glycosylases via a conformational proofreading/selection mechanism. Thus, APE1-mediated structural deformations of the DNA helix stabilize the enzyme–substrate complex and promote dissociation of human DNA glycosylases from the AP site with a subsequent increase in their turnover rate.
The major human apurinic/apyrimidinic (AP) endonuclease, APE1, stimulates DNA glycosylases by increasing their turnover rate on duplex DNA substrates. At present, the mechanism of the stimulation remains unclear. We report that the redox domain of APE1 is necessary for the active mode of stimulation of DNA glycosylases. Electron microscopy revealed that full-length APE1 oligomerizes on DNA possibly via cooperative binding to DNA. Consequently, APE1 shows DNA length dependence with preferential repair of short DNA duplexes. We propose that APE1-catalyzed oligomerization along DNA induces helix distortions, which in turn enable conformational selection and stimulation of DNA glycosylases. This new biochemical property of APE1 sheds light on the mechanism of redox function and its role in DNA repair.</description><subject>AP endonuclease</subject><subject>AP lyase</subject><subject>Apurinic/apyrimidinic site</subject><subject>Base excision repair</subject><subject>Biochemistry, Molecular Biology</subject><subject>DNA glycosylase</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Oxidative DNA damage</subject><subject>Redox function</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEoqXwDxDykUok9Ve-LkirUijSqnAoZ8uxx6xXjh3spNL-exyl7JGLPeN53hlr3qJ4T3BFMGlujpX2MsJUUUy6CtMKY_KiuCR105VtVzcvz3HDL4o3KR0zULdN87q4oD1v65xcFsvjAVAMDlAwaM7xQzlDHK2XDukwSuvXwmEZpUdyWqL1Vt3I6RTtaPWaIPA6-EU5kAkQ-YR2P-_ymXVfHnbotzupkE5uraXZjouTsw3-bfHKSJfg3fN9Vfz6evd4e1_uf3z7frvbl4pzOpeMMsIJA9bJtsedarTsjR64ZKC5YTUAUUBZT3FmCOmUaYzhUg5m6MzAanZVXG99D9KJKf9ZxpMI0or73V6sb5gySlnLnkhmP27sFMOfBdIsRpsUOCc9hCUJinHbd3nXbUb5hqoYUopgzr0JFqs54ig2c8RqTp4i8u6z7MPzhGUYQZ9F_9zIwOcNgLyTJwtRJGXBK9A2gpqFDvb_E_4CED-h3A</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Kladova, Olga A.</creator><creator>Bazlekowa-Karaban, Milena</creator><creator>Baconnais, Sonia</creator><creator>Piétrement, Olivier</creator><creator>Ishchenko, Alexander A.</creator><creator>Matkarimov, Bakhyt T.</creator><creator>Iakovlev, Danila A.</creator><creator>Vasenko, Andrey</creator><creator>Fedorova, Olga S.</creator><creator>Le Cam, Eric</creator><creator>Tudek, Barbara</creator><creator>Kuznetsov, Nikita A.</creator><creator>Saparbaev, Murat</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0488-8858</orcidid><orcidid>https://orcid.org/0000-0002-0018-7202</orcidid><orcidid>https://orcid.org/0000-0002-4630-1074</orcidid><orcidid>https://orcid.org/0000-0002-6832-6117</orcidid></search><sort><creationdate>201804</creationdate><title>The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation</title><author>Kladova, Olga A. ; Bazlekowa-Karaban, Milena ; Baconnais, Sonia ; Piétrement, Olivier ; Ishchenko, Alexander A. ; Matkarimov, Bakhyt T. ; Iakovlev, Danila A. ; Vasenko, Andrey ; Fedorova, Olga S. ; Le Cam, Eric ; Tudek, Barbara ; Kuznetsov, Nikita A. ; Saparbaev, Murat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-3231413e38a7908c6da9fdb4a3ed4f35ee1ce239203e3118cf6ff4aabfb8fb353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>AP endonuclease</topic><topic>AP lyase</topic><topic>Apurinic/apyrimidinic site</topic><topic>Base excision repair</topic><topic>Biochemistry, Molecular Biology</topic><topic>DNA glycosylase</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Oxidative DNA damage</topic><topic>Redox function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kladova, Olga A.</creatorcontrib><creatorcontrib>Bazlekowa-Karaban, Milena</creatorcontrib><creatorcontrib>Baconnais, Sonia</creatorcontrib><creatorcontrib>Piétrement, Olivier</creatorcontrib><creatorcontrib>Ishchenko, Alexander A.</creatorcontrib><creatorcontrib>Matkarimov, Bakhyt T.</creatorcontrib><creatorcontrib>Iakovlev, Danila A.</creatorcontrib><creatorcontrib>Vasenko, Andrey</creatorcontrib><creatorcontrib>Fedorova, Olga S.</creatorcontrib><creatorcontrib>Le Cam, Eric</creatorcontrib><creatorcontrib>Tudek, Barbara</creatorcontrib><creatorcontrib>Kuznetsov, Nikita A.</creatorcontrib><creatorcontrib>Saparbaev, Murat</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kladova, Olga A.</au><au>Bazlekowa-Karaban, Milena</au><au>Baconnais, Sonia</au><au>Piétrement, Olivier</au><au>Ishchenko, Alexander A.</au><au>Matkarimov, Bakhyt T.</au><au>Iakovlev, Danila A.</au><au>Vasenko, Andrey</au><au>Fedorova, Olga S.</au><au>Le Cam, Eric</au><au>Tudek, Barbara</au><au>Kuznetsov, Nikita A.</au><au>Saparbaev, Murat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2018-04</date><risdate>2018</risdate><volume>64</volume><spage>10</spage><epage>25</epage><pages>10-25</pages><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>[Display omitted]
•The redox domain of APE1 is required for DNA glycosylase activity stimulation.•APE1 stabilizes enzyme–substrate and stimulates disruption of enzyme–product complexes.•APE1 forms multiprotein oligomers along an undamaged DNA duplex.•APE1 shows DNA length dependence with preferential cleavage of short DNA duplexes.•APE1 stimulates DNA glycosylases via a conformational selection mechanism.
The base excision repair (BER) pathway consists of sequential action of DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease necessary to remove a damaged base and generate a single-strand break in duplex DNA. Human multifunctional AP endonuclease 1 (APE1, a.k.a. APEX1, HAP-1, or Ref-1) plays essential roles in BER by acting downstream of DNA glycosylases to incise a DNA duplex at AP sites and remove 3′-blocking sugar moieties at DNA strand breaks. Human 8-oxoguanine-DNA glycosylase (OGG1), methyl-CpG-binding domain 4 (MBD4, a.k.a. MED1), and alkyl-N-purine-DNA glycosylase (ANPG, a.k.a. Aag or MPG) excise a variety of damaged bases from DNA. Here we demonstrated that the redox-deficient truncated APE1 protein lacking the first N-terminal 61 amino acid residues (APE1-NΔ61) cannot stimulate DNA glycosylase activities of OGG1, MBD4, and ANPG on duplex DNA substrates. Electron microscopy imaging of APE1–DNA complexes revealed oligomerization of APE1 along the DNA duplex and APE1-mediated DNA bridging followed by DNA aggregation. APE1 polymerizes on both undamaged and damaged DNA in cooperative mode. Association of APE1 with undamaged DNA may enable scanning for damage; however, this event reduces effective concentration of the enzyme and subsequently decreases APE1-catalyzed cleavage rates on long DNA substrates. We propose that APE1 oligomers on DNA induce helix distortions thereby enhancing molecular recognition of DNA lesions by DNA glycosylases via a conformational proofreading/selection mechanism. Thus, APE1-mediated structural deformations of the DNA helix stabilize the enzyme–substrate complex and promote dissociation of human DNA glycosylases from the AP site with a subsequent increase in their turnover rate.
The major human apurinic/apyrimidinic (AP) endonuclease, APE1, stimulates DNA glycosylases by increasing their turnover rate on duplex DNA substrates. At present, the mechanism of the stimulation remains unclear. We report that the redox domain of APE1 is necessary for the active mode of stimulation of DNA glycosylases. Electron microscopy revealed that full-length APE1 oligomerizes on DNA possibly via cooperative binding to DNA. Consequently, APE1 shows DNA length dependence with preferential repair of short DNA duplexes. We propose that APE1-catalyzed oligomerization along DNA induces helix distortions, which in turn enable conformational selection and stimulation of DNA glycosylases. This new biochemical property of APE1 sheds light on the mechanism of redox function and its role in DNA repair.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29475157</pmid><doi>10.1016/j.dnarep.2018.02.001</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0488-8858</orcidid><orcidid>https://orcid.org/0000-0002-0018-7202</orcidid><orcidid>https://orcid.org/0000-0002-4630-1074</orcidid><orcidid>https://orcid.org/0000-0002-6832-6117</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-7864 |
ispartof | DNA repair, 2018-04, Vol.64, p.10-25 |
issn | 1568-7864 1568-7856 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02322373v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | AP endonuclease AP lyase Apurinic/apyrimidinic site Base excision repair Biochemistry, Molecular Biology DNA glycosylase Life Sciences Molecular biology Oxidative DNA damage Redox function |
title | The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20the%20N-terminal%20domain%20of%20human%20apurinic/apyrimidinic%20endonuclease%201,%20APE1,%20in%20DNA%20glycosylase%20stimulation&rft.jtitle=DNA%20repair&rft.au=Kladova,%20Olga%20A.&rft.date=2018-04&rft.volume=64&rft.spage=10&rft.epage=25&rft.pages=10-25&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2018.02.001&rft_dat=%3Cproquest_hal_p%3E2007980187%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-3231413e38a7908c6da9fdb4a3ed4f35ee1ce239203e3118cf6ff4aabfb8fb353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2007980187&rft_id=info:pmid/29475157&rfr_iscdi=true |