Loading…
Global stability of buoyant jets and plumes
The linear global stability of laminar buoyant jets and plumes is investigated under the low-Mach-number approximation. For Richardson numbers in the range $10^{-4}\leqslant Ri\leqslant 10^{3}$ and density ratios $S=\unicode[STIX]{x1D70C}_{\infty }/\unicode[STIX]{x1D70C}_{jet}$ between 1.05 and 7, o...
Saved in:
Published in: | Journal of fluid mechanics 2018-01, Vol.835, p.654-673 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-241a9da48054c898ccbac054b5de8b5b1c6bb741fc0d7fab8679a5b04d1f86853 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-241a9da48054c898ccbac054b5de8b5b1c6bb741fc0d7fab8679a5b04d1f86853 |
container_end_page | 673 |
container_issue | |
container_start_page | 654 |
container_title | Journal of fluid mechanics |
container_volume | 835 |
creator | Chakravarthy, R. V. K. Lesshafft, L. Huerre, P. |
description | The linear global stability of laminar buoyant jets and plumes is investigated under the low-Mach-number approximation. For Richardson numbers in the range
$10^{-4}\leqslant Ri\leqslant 10^{3}$
and density ratios
$S=\unicode[STIX]{x1D70C}_{\infty }/\unicode[STIX]{x1D70C}_{jet}$
between 1.05 and 7, only axisymmetric perturbations are found to exhibit global instability, consistent with experimental observations in helium jets. By varying the Richardson number over seven decades, the effects of buoyancy on the base flow and on the instability dynamics are characterised, and distinct behaviour is observed in the low-
$Ri$
(jet) and in the high-
$Ri$
(plume) regimes. A sensitivity analysis indicates that different physical mechanisms are responsible for the global instability dynamics in both regimes. In buoyant jets at low Richardson number, the baroclinic torque enhances the basic shear instability, whereas buoyancy provides the dominant instability mechanism in plumes at high Richardson number. The onset of axisymmetric global instability in both regimes is consistent with the presence of absolute instability. While absolute instability also occurs for helical perturbations, it appears to be too weak or too localised to give rise to a global instability. |
doi_str_mv | 10.1017/jfm.2017.764 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02322490v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_764</cupid><sourcerecordid>1973762789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-241a9da48054c898ccbac054b5de8b5b1c6bb741fc0d7fab8679a5b04d1f86853</originalsourceid><addsrcrecordid>eNptkEFLwzAUx4MoOKc3P0DBk2jrS5o2yXEMncLAi55Dkiba0i4zaYV9ezM2xIOn9-fxe38eP4SuMRQYMHvo3FCQFApW0xM0w7QWeYrVKZoBEJJjTOAcXcTYAeASBJuhu1XvteqzOCrd9u24y7zL9OR3ajNmnR1jpjZNtu2nwcZLdOZUH-3Vcc7R-9Pj2_I5X7-uXpaLdW4opWNOKFaiUZRDRQ0X3BitTMq6aizXlcam1ppR7Aw0zCnNayZUpYE22PGaV-Uc3R56P1Uvt6EdVNhJr1r5vFjL_Q5ISQgV8I0Te3Ngt8F_TTaOsvNT2KT3JBasZDVhXCTq_kCZ4GMM1v3WYpB7dTKpk3t1MvlKeHHE1aBD23zYP63_HfwAghRuoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973762789</pqid></control><display><type>article</type><title>Global stability of buoyant jets and plumes</title><source>Cambridge Journals Online</source><creator>Chakravarthy, R. V. K. ; Lesshafft, L. ; Huerre, P.</creator><creatorcontrib>Chakravarthy, R. V. K. ; Lesshafft, L. ; Huerre, P.</creatorcontrib><description>The linear global stability of laminar buoyant jets and plumes is investigated under the low-Mach-number approximation. For Richardson numbers in the range
$10^{-4}\leqslant Ri\leqslant 10^{3}$
and density ratios
$S=\unicode[STIX]{x1D70C}_{\infty }/\unicode[STIX]{x1D70C}_{jet}$
between 1.05 and 7, only axisymmetric perturbations are found to exhibit global instability, consistent with experimental observations in helium jets. By varying the Richardson number over seven decades, the effects of buoyancy on the base flow and on the instability dynamics are characterised, and distinct behaviour is observed in the low-
$Ri$
(jet) and in the high-
$Ri$
(plume) regimes. A sensitivity analysis indicates that different physical mechanisms are responsible for the global instability dynamics in both regimes. In buoyant jets at low Richardson number, the baroclinic torque enhances the basic shear instability, whereas buoyancy provides the dominant instability mechanism in plumes at high Richardson number. The onset of axisymmetric global instability in both regimes is consistent with the presence of absolute instability. While absolute instability also occurs for helical perturbations, it appears to be too weak or too localised to give rise to a global instability.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.764</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Base flow ; Buoyancy ; Buoyant jets ; Dynamic stability ; Dynamics ; Engineering Sciences ; Experiments ; Flow stability ; Fluids ; Fluids mechanics ; Gravity ; Helium ; Instability ; Jets ; JFM Papers ; Kelvin-Helmholtz instability ; Mechanics ; Perturbations ; Plumes ; Ratios ; Richardson number ; Sensitivity analysis ; Simulation ; Torque</subject><ispartof>Journal of fluid mechanics, 2018-01, Vol.835, p.654-673</ispartof><rights>2017 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-241a9da48054c898ccbac054b5de8b5b1c6bb741fc0d7fab8679a5b04d1f86853</citedby><cites>FETCH-LOGICAL-c444t-241a9da48054c898ccbac054b5de8b5b1c6bb741fc0d7fab8679a5b04d1f86853</cites><orcidid>0000-0002-2513-4553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017007649/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72960</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02322490$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakravarthy, R. V. K.</creatorcontrib><creatorcontrib>Lesshafft, L.</creatorcontrib><creatorcontrib>Huerre, P.</creatorcontrib><title>Global stability of buoyant jets and plumes</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The linear global stability of laminar buoyant jets and plumes is investigated under the low-Mach-number approximation. For Richardson numbers in the range
$10^{-4}\leqslant Ri\leqslant 10^{3}$
and density ratios
$S=\unicode[STIX]{x1D70C}_{\infty }/\unicode[STIX]{x1D70C}_{jet}$
between 1.05 and 7, only axisymmetric perturbations are found to exhibit global instability, consistent with experimental observations in helium jets. By varying the Richardson number over seven decades, the effects of buoyancy on the base flow and on the instability dynamics are characterised, and distinct behaviour is observed in the low-
$Ri$
(jet) and in the high-
$Ri$
(plume) regimes. A sensitivity analysis indicates that different physical mechanisms are responsible for the global instability dynamics in both regimes. In buoyant jets at low Richardson number, the baroclinic torque enhances the basic shear instability, whereas buoyancy provides the dominant instability mechanism in plumes at high Richardson number. The onset of axisymmetric global instability in both regimes is consistent with the presence of absolute instability. While absolute instability also occurs for helical perturbations, it appears to be too weak or too localised to give rise to a global instability.</description><subject>Approximation</subject><subject>Base flow</subject><subject>Buoyancy</subject><subject>Buoyant jets</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Engineering Sciences</subject><subject>Experiments</subject><subject>Flow stability</subject><subject>Fluids</subject><subject>Fluids mechanics</subject><subject>Gravity</subject><subject>Helium</subject><subject>Instability</subject><subject>Jets</subject><subject>JFM Papers</subject><subject>Kelvin-Helmholtz instability</subject><subject>Mechanics</subject><subject>Perturbations</subject><subject>Plumes</subject><subject>Ratios</subject><subject>Richardson number</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Torque</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkEFLwzAUx4MoOKc3P0DBk2jrS5o2yXEMncLAi55Dkiba0i4zaYV9ezM2xIOn9-fxe38eP4SuMRQYMHvo3FCQFApW0xM0w7QWeYrVKZoBEJJjTOAcXcTYAeASBJuhu1XvteqzOCrd9u24y7zL9OR3ajNmnR1jpjZNtu2nwcZLdOZUH-3Vcc7R-9Pj2_I5X7-uXpaLdW4opWNOKFaiUZRDRQ0X3BitTMq6aizXlcam1ppR7Aw0zCnNayZUpYE22PGaV-Uc3R56P1Uvt6EdVNhJr1r5vFjL_Q5ISQgV8I0Te3Ngt8F_TTaOsvNT2KT3JBasZDVhXCTq_kCZ4GMM1v3WYpB7dTKpk3t1MvlKeHHE1aBD23zYP63_HfwAghRuoA</recordid><startdate>20180125</startdate><enddate>20180125</enddate><creator>Chakravarthy, R. V. K.</creator><creator>Lesshafft, L.</creator><creator>Huerre, P.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2513-4553</orcidid></search><sort><creationdate>20180125</creationdate><title>Global stability of buoyant jets and plumes</title><author>Chakravarthy, R. V. K. ; Lesshafft, L. ; Huerre, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-241a9da48054c898ccbac054b5de8b5b1c6bb741fc0d7fab8679a5b04d1f86853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Base flow</topic><topic>Buoyancy</topic><topic>Buoyant jets</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Engineering Sciences</topic><topic>Experiments</topic><topic>Flow stability</topic><topic>Fluids</topic><topic>Fluids mechanics</topic><topic>Gravity</topic><topic>Helium</topic><topic>Instability</topic><topic>Jets</topic><topic>JFM Papers</topic><topic>Kelvin-Helmholtz instability</topic><topic>Mechanics</topic><topic>Perturbations</topic><topic>Plumes</topic><topic>Ratios</topic><topic>Richardson number</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakravarthy, R. V. K.</creatorcontrib><creatorcontrib>Lesshafft, L.</creatorcontrib><creatorcontrib>Huerre, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>ProQuest Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakravarthy, R. V. K.</au><au>Lesshafft, L.</au><au>Huerre, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global stability of buoyant jets and plumes</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2018-01-25</date><risdate>2018</risdate><volume>835</volume><spage>654</spage><epage>673</epage><pages>654-673</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The linear global stability of laminar buoyant jets and plumes is investigated under the low-Mach-number approximation. For Richardson numbers in the range
$10^{-4}\leqslant Ri\leqslant 10^{3}$
and density ratios
$S=\unicode[STIX]{x1D70C}_{\infty }/\unicode[STIX]{x1D70C}_{jet}$
between 1.05 and 7, only axisymmetric perturbations are found to exhibit global instability, consistent with experimental observations in helium jets. By varying the Richardson number over seven decades, the effects of buoyancy on the base flow and on the instability dynamics are characterised, and distinct behaviour is observed in the low-
$Ri$
(jet) and in the high-
$Ri$
(plume) regimes. A sensitivity analysis indicates that different physical mechanisms are responsible for the global instability dynamics in both regimes. In buoyant jets at low Richardson number, the baroclinic torque enhances the basic shear instability, whereas buoyancy provides the dominant instability mechanism in plumes at high Richardson number. The onset of axisymmetric global instability in both regimes is consistent with the presence of absolute instability. While absolute instability also occurs for helical perturbations, it appears to be too weak or too localised to give rise to a global instability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.764</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2513-4553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2018-01, Vol.835, p.654-673 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02322490v1 |
source | Cambridge Journals Online |
subjects | Approximation Base flow Buoyancy Buoyant jets Dynamic stability Dynamics Engineering Sciences Experiments Flow stability Fluids Fluids mechanics Gravity Helium Instability Jets JFM Papers Kelvin-Helmholtz instability Mechanics Perturbations Plumes Ratios Richardson number Sensitivity analysis Simulation Torque |
title | Global stability of buoyant jets and plumes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20stability%20of%20buoyant%20jets%20and%20plumes&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Chakravarthy,%20R.%20V.%20K.&rft.date=2018-01-25&rft.volume=835&rft.spage=654&rft.epage=673&rft.pages=654-673&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.764&rft_dat=%3Cproquest_hal_p%3E1973762789%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-241a9da48054c898ccbac054b5de8b5b1c6bb741fc0d7fab8679a5b04d1f86853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1973762789&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_764&rfr_iscdi=true |