Loading…

The A-decomposability of the Singer construction

Let RsM denote the Singer construction on an unstable module M over the Steenrod algebra A at the prime two; RsM is canonically a subobject of Ps⊗M, where Ps=F2[x1,…,xs] with generators of degree one and F2 is the field with two elements. Passage to A-indecomposables gives the natural transformation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebra 2019-01, Vol.517, p.186-206
Main Authors: Hưng, Nguyễn H.V., Powell, Geoffrey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-1d51e45639153a241ba2f086fca5a546fe2d58f994630b2e08c14b70854f96733
cites cdi_FETCH-LOGICAL-c346t-1d51e45639153a241ba2f086fca5a546fe2d58f994630b2e08c14b70854f96733
container_end_page 206
container_issue
container_start_page 186
container_title Journal of algebra
container_volume 517
creator Hưng, Nguyễn H.V.
Powell, Geoffrey
description Let RsM denote the Singer construction on an unstable module M over the Steenrod algebra A at the prime two; RsM is canonically a subobject of Ps⊗M, where Ps=F2[x1,…,xs] with generators of degree one and F2 is the field with two elements. Passage to A-indecomposables gives the natural transformation RsM→F2⊗A(Ps⊗M), which identifies with the dual of the composition of the Singer transfer and the Lannes–Zarati homomorphism. The main result of the paper proves the weak generalized algebraic spherical class conjecture, which was proposed by the first author. Namely, this morphism is trivial on elements of positive degree when s>2. The condition s>2 is necessary, as exhibited by the spherical classes of Hopf invariant one and those of Kervaire invariant one.
doi_str_mv 10.1016/j.jalgebra.2018.09.030
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02324725v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869318305490</els_id><sourcerecordid>oai_HAL_hal_02324725v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-1d51e45639153a241ba2f086fca5a546fe2d58f994630b2e08c14b70854f96733</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD_-guzVw66TzyY3S1ErFDxYwVvIZpM2y3ZTkrXQf--WqldPAzPv88I8CN1hqDBg8dBWrenWrk6mIoBlBaoCCmdogkFBSYT4PEcTAIJLKRS9RFc5twAYcyYnCFYbV8zKxtm43cVs6tCF4VBEXwzj4T30a5cKG_s8pC87hNjfoAtvuuxuf-Y1-nh-Ws0X5fLt5XU-W5aWMjGUuOHYMS6owpwawnBtiAcpvDXccCa8Iw2XXikmKNTEgbSY1VOQnHklppReo_tT78Z0epfC1qSDjiboxWypjzsglLAp4Xs8ZsUpa1PMOTn_B2DQR0e61b-O9NGRBqVHRyP4eALd-Mk-uKSzDa63rgnJ2UE3MfxX8Q32-3D7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The A-decomposability of the Singer construction</title><source>ScienceDirect Journals</source><creator>Hưng, Nguyễn H.V. ; Powell, Geoffrey</creator><creatorcontrib>Hưng, Nguyễn H.V. ; Powell, Geoffrey</creatorcontrib><description>Let RsM denote the Singer construction on an unstable module M over the Steenrod algebra A at the prime two; RsM is canonically a subobject of Ps⊗M, where Ps=F2[x1,…,xs] with generators of degree one and F2 is the field with two elements. Passage to A-indecomposables gives the natural transformation RsM→F2⊗A(Ps⊗M), which identifies with the dual of the composition of the Singer transfer and the Lannes–Zarati homomorphism. The main result of the paper proves the weak generalized algebraic spherical class conjecture, which was proposed by the first author. Namely, this morphism is trivial on elements of positive degree when s&gt;2. The condition s&gt;2 is necessary, as exhibited by the spherical classes of Hopf invariant one and those of Kervaire invariant one.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1016/j.jalgebra.2018.09.030</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algebraic Topology ; Destabilization ; Indecomposables ; Mathematics ; Singer functor ; Steenrod algebra ; Unstable module</subject><ispartof>Journal of algebra, 2019-01, Vol.517, p.186-206</ispartof><rights>2018 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-1d51e45639153a241ba2f086fca5a546fe2d58f994630b2e08c14b70854f96733</citedby><cites>FETCH-LOGICAL-c346t-1d51e45639153a241ba2f086fca5a546fe2d58f994630b2e08c14b70854f96733</cites><orcidid>0000-0001-6879-3180 ; 0000-0003-2564-1202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02324725$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hưng, Nguyễn H.V.</creatorcontrib><creatorcontrib>Powell, Geoffrey</creatorcontrib><title>The A-decomposability of the Singer construction</title><title>Journal of algebra</title><description>Let RsM denote the Singer construction on an unstable module M over the Steenrod algebra A at the prime two; RsM is canonically a subobject of Ps⊗M, where Ps=F2[x1,…,xs] with generators of degree one and F2 is the field with two elements. Passage to A-indecomposables gives the natural transformation RsM→F2⊗A(Ps⊗M), which identifies with the dual of the composition of the Singer transfer and the Lannes–Zarati homomorphism. The main result of the paper proves the weak generalized algebraic spherical class conjecture, which was proposed by the first author. Namely, this morphism is trivial on elements of positive degree when s&gt;2. The condition s&gt;2 is necessary, as exhibited by the spherical classes of Hopf invariant one and those of Kervaire invariant one.</description><subject>Algebraic Topology</subject><subject>Destabilization</subject><subject>Indecomposables</subject><subject>Mathematics</subject><subject>Singer functor</subject><subject>Steenrod algebra</subject><subject>Unstable module</subject><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD_-guzVw66TzyY3S1ErFDxYwVvIZpM2y3ZTkrXQf--WqldPAzPv88I8CN1hqDBg8dBWrenWrk6mIoBlBaoCCmdogkFBSYT4PEcTAIJLKRS9RFc5twAYcyYnCFYbV8zKxtm43cVs6tCF4VBEXwzj4T30a5cKG_s8pC87hNjfoAtvuuxuf-Y1-nh-Ws0X5fLt5XU-W5aWMjGUuOHYMS6owpwawnBtiAcpvDXccCa8Iw2XXikmKNTEgbSY1VOQnHklppReo_tT78Z0epfC1qSDjiboxWypjzsglLAp4Xs8ZsUpa1PMOTn_B2DQR0e61b-O9NGRBqVHRyP4eALd-Mk-uKSzDa63rgnJ2UE3MfxX8Q32-3D7</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hưng, Nguyễn H.V.</creator><creator>Powell, Geoffrey</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6879-3180</orcidid><orcidid>https://orcid.org/0000-0003-2564-1202</orcidid></search><sort><creationdate>20190101</creationdate><title>The A-decomposability of the Singer construction</title><author>Hưng, Nguyễn H.V. ; Powell, Geoffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-1d51e45639153a241ba2f086fca5a546fe2d58f994630b2e08c14b70854f96733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic Topology</topic><topic>Destabilization</topic><topic>Indecomposables</topic><topic>Mathematics</topic><topic>Singer functor</topic><topic>Steenrod algebra</topic><topic>Unstable module</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hưng, Nguyễn H.V.</creatorcontrib><creatorcontrib>Powell, Geoffrey</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hưng, Nguyễn H.V.</au><au>Powell, Geoffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The A-decomposability of the Singer construction</atitle><jtitle>Journal of algebra</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>517</volume><spage>186</spage><epage>206</epage><pages>186-206</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>Let RsM denote the Singer construction on an unstable module M over the Steenrod algebra A at the prime two; RsM is canonically a subobject of Ps⊗M, where Ps=F2[x1,…,xs] with generators of degree one and F2 is the field with two elements. Passage to A-indecomposables gives the natural transformation RsM→F2⊗A(Ps⊗M), which identifies with the dual of the composition of the Singer transfer and the Lannes–Zarati homomorphism. The main result of the paper proves the weak generalized algebraic spherical class conjecture, which was proposed by the first author. Namely, this morphism is trivial on elements of positive degree when s&gt;2. The condition s&gt;2 is necessary, as exhibited by the spherical classes of Hopf invariant one and those of Kervaire invariant one.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jalgebra.2018.09.030</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6879-3180</orcidid><orcidid>https://orcid.org/0000-0003-2564-1202</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8693
ispartof Journal of algebra, 2019-01, Vol.517, p.186-206
issn 0021-8693
1090-266X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02324725v1
source ScienceDirect Journals
subjects Algebraic Topology
Destabilization
Indecomposables
Mathematics
Singer functor
Steenrod algebra
Unstable module
title The A-decomposability of the Singer construction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20A-decomposability%20of%20the%20Singer%20construction&rft.jtitle=Journal%20of%20algebra&rft.au=H%C6%B0ng,%20Nguy%E1%BB%85n%20H.V.&rft.date=2019-01-01&rft.volume=517&rft.spage=186&rft.epage=206&rft.pages=186-206&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1016/j.jalgebra.2018.09.030&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02324725v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-1d51e45639153a241ba2f086fca5a546fe2d58f994630b2e08c14b70854f96733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true