Loading…

Reversals in stability of linear time-delay systems: A finer characterization

In most of the numerical examples of time-delay systems proposed in the literature, the number of unstable characteristic roots remains positive before and after a multiple critical imaginary root (CIR) appears (as the delay, seen as a parameter, increases). This fact may lead to some misunderstandi...

Full description

Saved in:
Bibliographic Details
Published in:Automatica (Oxford) 2019-10, Vol.108, p.108479, Article 108479
Main Authors: Li, Xu, Liu, Jian-Chang, Li, Xu-Guang, Niculescu, Silviu-Iulian, Çela, Arben
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-a291497d581478536b01453547bcabecba4ea75af1c292b57c8742f2bc3420213
cites cdi_FETCH-LOGICAL-c352t-a291497d581478536b01453547bcabecba4ea75af1c292b57c8742f2bc3420213
container_end_page
container_issue
container_start_page 108479
container_title Automatica (Oxford)
container_volume 108
creator Li, Xu
Liu, Jian-Chang
Li, Xu-Guang
Niculescu, Silviu-Iulian
Çela, Arben
description In most of the numerical examples of time-delay systems proposed in the literature, the number of unstable characteristic roots remains positive before and after a multiple critical imaginary root (CIR) appears (as the delay, seen as a parameter, increases). This fact may lead to some misunderstandings: (i) A multiple CIR may at most affect the instability degree; (ii) It cannot cause any stability reversals (stability transitions from instability to stability). As far as we know, whether the appearance of a multiple CIR can induce stability is still unclear (in fact, when a CIR generates a stability reversal has not been specifically investigated). In this paper, we provide a finer analysis of stability reversals and some new insights into the classification: the link between the multiplicity of a CIR and the asymptotic behavior with the stabilizing effect. Based on these results, we present an example illustrating that a multiple CIR’s asymptotic behavior is able to cause a stability reversal. To the best of the authors’ knowledge, such an example is a novelty in the literature on time-delay systems.
doi_str_mv 10.1016/j.automatica.2019.06.031
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02328850v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109819303279</els_id><sourcerecordid>oai_HAL_hal_02328850v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a291497d581478536b01453547bcabecba4ea75af1c292b57c8742f2bc3420213</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-h1w9tOajaVNv66KusCKInsM0nbJZ-iFJXKi_3pYVPXoaZuZ9X2YeQihnKWc8v9mn8BmHDqKzkArGy5TlKZP8hCy4LmQitMxPyYIxphLOSn1OLkLYT23GtViQ51c8oA_QBup6GiJUrnVxpENDW9cjeBpdh0mNLYw0jCFiF27pijbT0lO7Aw82ondf0wFDf0nOmikKr37qkrw_3L-tN8n25fFpvdomVioRExAlz8qiVppnhVYyrxjPlFRZUVmo0FaQIRQKGm5FKSpVWF1kohGVlZlggssluT7m7qA1H9514EczgDOb1dbMMyak0Fqxw6zVR631Qwgem18DZ2ZGaPbmD6GZERqWmwnhZL07WnH65eDQm2Ad9hZr59FGUw_u_5Bvuih_AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reversals in stability of linear time-delay systems: A finer characterization</title><source>ScienceDirect Freedom Collection</source><creator>Li, Xu ; Liu, Jian-Chang ; Li, Xu-Guang ; Niculescu, Silviu-Iulian ; Çela, Arben</creator><creatorcontrib>Li, Xu ; Liu, Jian-Chang ; Li, Xu-Guang ; Niculescu, Silviu-Iulian ; Çela, Arben</creatorcontrib><description>In most of the numerical examples of time-delay systems proposed in the literature, the number of unstable characteristic roots remains positive before and after a multiple critical imaginary root (CIR) appears (as the delay, seen as a parameter, increases). This fact may lead to some misunderstandings: (i) A multiple CIR may at most affect the instability degree; (ii) It cannot cause any stability reversals (stability transitions from instability to stability). As far as we know, whether the appearance of a multiple CIR can induce stability is still unclear (in fact, when a CIR generates a stability reversal has not been specifically investigated). In this paper, we provide a finer analysis of stability reversals and some new insights into the classification: the link between the multiplicity of a CIR and the asymptotic behavior with the stabilizing effect. Based on these results, we present an example illustrating that a multiple CIR’s asymptotic behavior is able to cause a stability reversal. To the best of the authors’ knowledge, such an example is a novelty in the literature on time-delay systems.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2019.06.031</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic Control Engineering ; Computer Science ; Critical imaginary roots ; Multiple critical imaginary roots ; Stability ; Stability reversal ; Time-delay systems</subject><ispartof>Automatica (Oxford), 2019-10, Vol.108, p.108479, Article 108479</ispartof><rights>2019 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a291497d581478536b01453547bcabecba4ea75af1c292b57c8742f2bc3420213</citedby><cites>FETCH-LOGICAL-c352t-a291497d581478536b01453547bcabecba4ea75af1c292b57c8742f2bc3420213</cites><orcidid>0000-0002-3444-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://centralesupelec.hal.science/hal-02328850$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Liu, Jian-Chang</creatorcontrib><creatorcontrib>Li, Xu-Guang</creatorcontrib><creatorcontrib>Niculescu, Silviu-Iulian</creatorcontrib><creatorcontrib>Çela, Arben</creatorcontrib><title>Reversals in stability of linear time-delay systems: A finer characterization</title><title>Automatica (Oxford)</title><description>In most of the numerical examples of time-delay systems proposed in the literature, the number of unstable characteristic roots remains positive before and after a multiple critical imaginary root (CIR) appears (as the delay, seen as a parameter, increases). This fact may lead to some misunderstandings: (i) A multiple CIR may at most affect the instability degree; (ii) It cannot cause any stability reversals (stability transitions from instability to stability). As far as we know, whether the appearance of a multiple CIR can induce stability is still unclear (in fact, when a CIR generates a stability reversal has not been specifically investigated). In this paper, we provide a finer analysis of stability reversals and some new insights into the classification: the link between the multiplicity of a CIR and the asymptotic behavior with the stabilizing effect. Based on these results, we present an example illustrating that a multiple CIR’s asymptotic behavior is able to cause a stability reversal. To the best of the authors’ knowledge, such an example is a novelty in the literature on time-delay systems.</description><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Critical imaginary roots</subject><subject>Multiple critical imaginary roots</subject><subject>Stability</subject><subject>Stability reversal</subject><subject>Time-delay systems</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-h1w9tOajaVNv66KusCKInsM0nbJZ-iFJXKi_3pYVPXoaZuZ9X2YeQihnKWc8v9mn8BmHDqKzkArGy5TlKZP8hCy4LmQitMxPyYIxphLOSn1OLkLYT23GtViQ51c8oA_QBup6GiJUrnVxpENDW9cjeBpdh0mNLYw0jCFiF27pijbT0lO7Aw82ondf0wFDf0nOmikKr37qkrw_3L-tN8n25fFpvdomVioRExAlz8qiVppnhVYyrxjPlFRZUVmo0FaQIRQKGm5FKSpVWF1kohGVlZlggssluT7m7qA1H9514EczgDOb1dbMMyak0Fqxw6zVR631Qwgem18DZ2ZGaPbmD6GZERqWmwnhZL07WnH65eDQm2Ad9hZr59FGUw_u_5Bvuih_AQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Li, Xu</creator><creator>Liu, Jian-Chang</creator><creator>Li, Xu-Guang</creator><creator>Niculescu, Silviu-Iulian</creator><creator>Çela, Arben</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid></search><sort><creationdate>20191001</creationdate><title>Reversals in stability of linear time-delay systems: A finer characterization</title><author>Li, Xu ; Liu, Jian-Chang ; Li, Xu-Guang ; Niculescu, Silviu-Iulian ; Çela, Arben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a291497d581478536b01453547bcabecba4ea75af1c292b57c8742f2bc3420213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Critical imaginary roots</topic><topic>Multiple critical imaginary roots</topic><topic>Stability</topic><topic>Stability reversal</topic><topic>Time-delay systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Liu, Jian-Chang</creatorcontrib><creatorcontrib>Li, Xu-Guang</creatorcontrib><creatorcontrib>Niculescu, Silviu-Iulian</creatorcontrib><creatorcontrib>Çela, Arben</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xu</au><au>Liu, Jian-Chang</au><au>Li, Xu-Guang</au><au>Niculescu, Silviu-Iulian</au><au>Çela, Arben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversals in stability of linear time-delay systems: A finer characterization</atitle><jtitle>Automatica (Oxford)</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>108</volume><spage>108479</spage><pages>108479-</pages><artnum>108479</artnum><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>In most of the numerical examples of time-delay systems proposed in the literature, the number of unstable characteristic roots remains positive before and after a multiple critical imaginary root (CIR) appears (as the delay, seen as a parameter, increases). This fact may lead to some misunderstandings: (i) A multiple CIR may at most affect the instability degree; (ii) It cannot cause any stability reversals (stability transitions from instability to stability). As far as we know, whether the appearance of a multiple CIR can induce stability is still unclear (in fact, when a CIR generates a stability reversal has not been specifically investigated). In this paper, we provide a finer analysis of stability reversals and some new insights into the classification: the link between the multiplicity of a CIR and the asymptotic behavior with the stabilizing effect. Based on these results, we present an example illustrating that a multiple CIR’s asymptotic behavior is able to cause a stability reversal. To the best of the authors’ knowledge, such an example is a novelty in the literature on time-delay systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2019.06.031</doi><orcidid>https://orcid.org/0000-0002-3444-2566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2019-10, Vol.108, p.108479, Article 108479
issn 0005-1098
1873-2836
language eng
recordid cdi_hal_primary_oai_HAL_hal_02328850v1
source ScienceDirect Freedom Collection
subjects Automatic Control Engineering
Computer Science
Critical imaginary roots
Multiple critical imaginary roots
Stability
Stability reversal
Time-delay systems
title Reversals in stability of linear time-delay systems: A finer characterization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversals%20in%20stability%20of%20linear%20time-delay%20systems:%20A%20finer%20characterization&rft.jtitle=Automatica%20(Oxford)&rft.au=Li,%20Xu&rft.date=2019-10-01&rft.volume=108&rft.spage=108479&rft.pages=108479-&rft.artnum=108479&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2019.06.031&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02328850v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-a291497d581478536b01453547bcabecba4ea75af1c292b57c8742f2bc3420213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true