Loading…

Ultrafast terahertz detectors based on three-dimensional meta-atoms

Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In...

Full description

Saved in:
Bibliographic Details
Published in:Optica 2017-12, Vol.4 (12), p.1451
Main Authors: Paulillo, B., Pirotta, S., Nong, H., Crozat, P., Guilet, S., Xu, G., Dhillon, S., Li, L. H., Davies, A. G., Linfield, E. H., Colombelli, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23
cites cdi_FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23
container_end_page
container_issue 12
container_start_page 1451
container_title Optica
container_volume 4
creator Paulillo, B.
Pirotta, S.
Nong, H.
Crozat, P.
Guilet, S.
Xu, G.
Dhillon, S.
Li, L. H.
Davies, A. G.
Linfield, E. H.
Colombelli, R.
description Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In particular, semiconductor-based ultrafast THz receivers are required for compact, ultrafast spectroscopy and communication systems, and to date, quantum-well infrared photodetectors (QWIPs) have proved to be an excellent technology to address this, given their intrinsic picosecond-range response. However, with research focused on diffraction-limited QWIP structures (λ∕2), RC constants cannot be reduced indefinitely, and detection speeds are bound to eventually meet an upper limit. The key to an ultra-fast response with no intrinsic upper limit even at tens of gigahertz (GHz) is an aggressive reduction in device size, below the diffraction limit. Here we demonstrate sub-wavelength (λ∕10) THz QWIP detectors based on a 3D split-ring geometry, yielding ultra-fast operation at a wavelength of around 100 μm. Each sensing meta-atom pixel features a suspended loop antenna that feeds THz radiation in the ∼20 μm 3 active volume (V eff ∼3 × 10 −4 λ∕2 3). Arrays of detectors as well as single-pixel detectors have been implemented with this new architecture, with the latter exhibiting ultra-low dark currents below the nA level. This extremely small resonator architecture leads to measured optical response speeds-on arrays of 300 devices-of up to ∼3 GHz and an expected device operation of up to tens of GHz, based on the measured S parameters on single devices and arrays.
doi_str_mv 10.1364/OPTICA.4.001451
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02329183v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02329183v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrPXvfqYdtJJmmzx1LUCgv10J5DPmbpym5XkiDor7dlRXqaYXjm5eVh7JHDnONSLnbv-7fNei7nAFwqfsMmAlGWQuHy9mq_Z7OUPuAMoQRVwYRtDl2OtrEpF5miPVLMP0WgTD4PMRXOJgrFcCryMRKVoe3plNrhZLuip2xLm4c-PbC7xnaJZn9zyg4vz_vNtqx3r-dWdelRi1w2K5QKFTR8RQFVhVzY4MF5B4LrAAK8BK2dq9xKee3JO-68kBqD8I0XOGVPY-7RduYztr2N32awrdmua3O5gUBRcY1f_MwuRtbHIaVIzf8DB3NRZkZlRppRGf4CI1Retw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast terahertz detectors based on three-dimensional meta-atoms</title><source>EZB Free E-Journals</source><creator>Paulillo, B. ; Pirotta, S. ; Nong, H. ; Crozat, P. ; Guilet, S. ; Xu, G. ; Dhillon, S. ; Li, L. H. ; Davies, A. G. ; Linfield, E. H. ; Colombelli, R.</creator><creatorcontrib>Paulillo, B. ; Pirotta, S. ; Nong, H. ; Crozat, P. ; Guilet, S. ; Xu, G. ; Dhillon, S. ; Li, L. H. ; Davies, A. G. ; Linfield, E. H. ; Colombelli, R.</creatorcontrib><description>Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In particular, semiconductor-based ultrafast THz receivers are required for compact, ultrafast spectroscopy and communication systems, and to date, quantum-well infrared photodetectors (QWIPs) have proved to be an excellent technology to address this, given their intrinsic picosecond-range response. However, with research focused on diffraction-limited QWIP structures (λ∕2), RC constants cannot be reduced indefinitely, and detection speeds are bound to eventually meet an upper limit. The key to an ultra-fast response with no intrinsic upper limit even at tens of gigahertz (GHz) is an aggressive reduction in device size, below the diffraction limit. Here we demonstrate sub-wavelength (λ∕10) THz QWIP detectors based on a 3D split-ring geometry, yielding ultra-fast operation at a wavelength of around 100 μm. Each sensing meta-atom pixel features a suspended loop antenna that feeds THz radiation in the ∼20 μm 3 active volume (V eff ∼3 × 10 −4 λ∕2 3). Arrays of detectors as well as single-pixel detectors have been implemented with this new architecture, with the latter exhibiting ultra-low dark currents below the nA level. This extremely small resonator architecture leads to measured optical response speeds-on arrays of 300 devices-of up to ∼3 GHz and an expected device operation of up to tens of GHz, based on the measured S parameters on single devices and arrays.</description><identifier>ISSN: 2334-2536</identifier><identifier>EISSN: 2334-2536</identifier><identifier>DOI: 10.1364/OPTICA.4.001451</identifier><language>eng</language><publisher>Optical Society of America - OSA Publishing</publisher><subject>Condensed Matter ; Physics</subject><ispartof>Optica, 2017-12, Vol.4 (12), p.1451</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23</citedby><cites>FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23</cites><orcidid>0000-0002-5487-9570 ; 0000-0002-1540-9920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02329183$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulillo, B.</creatorcontrib><creatorcontrib>Pirotta, S.</creatorcontrib><creatorcontrib>Nong, H.</creatorcontrib><creatorcontrib>Crozat, P.</creatorcontrib><creatorcontrib>Guilet, S.</creatorcontrib><creatorcontrib>Xu, G.</creatorcontrib><creatorcontrib>Dhillon, S.</creatorcontrib><creatorcontrib>Li, L. H.</creatorcontrib><creatorcontrib>Davies, A. G.</creatorcontrib><creatorcontrib>Linfield, E. H.</creatorcontrib><creatorcontrib>Colombelli, R.</creatorcontrib><title>Ultrafast terahertz detectors based on three-dimensional meta-atoms</title><title>Optica</title><description>Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In particular, semiconductor-based ultrafast THz receivers are required for compact, ultrafast spectroscopy and communication systems, and to date, quantum-well infrared photodetectors (QWIPs) have proved to be an excellent technology to address this, given their intrinsic picosecond-range response. However, with research focused on diffraction-limited QWIP structures (λ∕2), RC constants cannot be reduced indefinitely, and detection speeds are bound to eventually meet an upper limit. The key to an ultra-fast response with no intrinsic upper limit even at tens of gigahertz (GHz) is an aggressive reduction in device size, below the diffraction limit. Here we demonstrate sub-wavelength (λ∕10) THz QWIP detectors based on a 3D split-ring geometry, yielding ultra-fast operation at a wavelength of around 100 μm. Each sensing meta-atom pixel features a suspended loop antenna that feeds THz radiation in the ∼20 μm 3 active volume (V eff ∼3 × 10 −4 λ∕2 3). Arrays of detectors as well as single-pixel detectors have been implemented with this new architecture, with the latter exhibiting ultra-low dark currents below the nA level. This extremely small resonator architecture leads to measured optical response speeds-on arrays of 300 devices-of up to ∼3 GHz and an expected device operation of up to tens of GHz, based on the measured S parameters on single devices and arrays.</description><subject>Condensed Matter</subject><subject>Physics</subject><issn>2334-2536</issn><issn>2334-2536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWGrPXvfqYdtJJmmzx1LUCgv10J5DPmbpym5XkiDor7dlRXqaYXjm5eVh7JHDnONSLnbv-7fNei7nAFwqfsMmAlGWQuHy9mq_Z7OUPuAMoQRVwYRtDl2OtrEpF5miPVLMP0WgTD4PMRXOJgrFcCryMRKVoe3plNrhZLuip2xLm4c-PbC7xnaJZn9zyg4vz_vNtqx3r-dWdelRi1w2K5QKFTR8RQFVhVzY4MF5B4LrAAK8BK2dq9xKee3JO-68kBqD8I0XOGVPY-7RduYztr2N32awrdmua3O5gUBRcY1f_MwuRtbHIaVIzf8DB3NRZkZlRppRGf4CI1Retw</recordid><startdate>20171220</startdate><enddate>20171220</enddate><creator>Paulillo, B.</creator><creator>Pirotta, S.</creator><creator>Nong, H.</creator><creator>Crozat, P.</creator><creator>Guilet, S.</creator><creator>Xu, G.</creator><creator>Dhillon, S.</creator><creator>Li, L. H.</creator><creator>Davies, A. G.</creator><creator>Linfield, E. H.</creator><creator>Colombelli, R.</creator><general>Optical Society of America - OSA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5487-9570</orcidid><orcidid>https://orcid.org/0000-0002-1540-9920</orcidid></search><sort><creationdate>20171220</creationdate><title>Ultrafast terahertz detectors based on three-dimensional meta-atoms</title><author>Paulillo, B. ; Pirotta, S. ; Nong, H. ; Crozat, P. ; Guilet, S. ; Xu, G. ; Dhillon, S. ; Li, L. H. ; Davies, A. G. ; Linfield, E. H. ; Colombelli, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulillo, B.</creatorcontrib><creatorcontrib>Pirotta, S.</creatorcontrib><creatorcontrib>Nong, H.</creatorcontrib><creatorcontrib>Crozat, P.</creatorcontrib><creatorcontrib>Guilet, S.</creatorcontrib><creatorcontrib>Xu, G.</creatorcontrib><creatorcontrib>Dhillon, S.</creatorcontrib><creatorcontrib>Li, L. H.</creatorcontrib><creatorcontrib>Davies, A. G.</creatorcontrib><creatorcontrib>Linfield, E. H.</creatorcontrib><creatorcontrib>Colombelli, R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Optica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulillo, B.</au><au>Pirotta, S.</au><au>Nong, H.</au><au>Crozat, P.</au><au>Guilet, S.</au><au>Xu, G.</au><au>Dhillon, S.</au><au>Li, L. H.</au><au>Davies, A. G.</au><au>Linfield, E. H.</au><au>Colombelli, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast terahertz detectors based on three-dimensional meta-atoms</atitle><jtitle>Optica</jtitle><date>2017-12-20</date><risdate>2017</risdate><volume>4</volume><issue>12</issue><spage>1451</spage><pages>1451-</pages><issn>2334-2536</issn><eissn>2334-2536</eissn><abstract>Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In particular, semiconductor-based ultrafast THz receivers are required for compact, ultrafast spectroscopy and communication systems, and to date, quantum-well infrared photodetectors (QWIPs) have proved to be an excellent technology to address this, given their intrinsic picosecond-range response. However, with research focused on diffraction-limited QWIP structures (λ∕2), RC constants cannot be reduced indefinitely, and detection speeds are bound to eventually meet an upper limit. The key to an ultra-fast response with no intrinsic upper limit even at tens of gigahertz (GHz) is an aggressive reduction in device size, below the diffraction limit. Here we demonstrate sub-wavelength (λ∕10) THz QWIP detectors based on a 3D split-ring geometry, yielding ultra-fast operation at a wavelength of around 100 μm. Each sensing meta-atom pixel features a suspended loop antenna that feeds THz radiation in the ∼20 μm 3 active volume (V eff ∼3 × 10 −4 λ∕2 3). Arrays of detectors as well as single-pixel detectors have been implemented with this new architecture, with the latter exhibiting ultra-low dark currents below the nA level. This extremely small resonator architecture leads to measured optical response speeds-on arrays of 300 devices-of up to ∼3 GHz and an expected device operation of up to tens of GHz, based on the measured S parameters on single devices and arrays.</abstract><pub>Optical Society of America - OSA Publishing</pub><doi>10.1364/OPTICA.4.001451</doi><orcidid>https://orcid.org/0000-0002-5487-9570</orcidid><orcidid>https://orcid.org/0000-0002-1540-9920</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2334-2536
ispartof Optica, 2017-12, Vol.4 (12), p.1451
issn 2334-2536
2334-2536
language eng
recordid cdi_hal_primary_oai_HAL_hal_02329183v1
source EZB Free E-Journals
subjects Condensed Matter
Physics
title Ultrafast terahertz detectors based on three-dimensional meta-atoms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20terahertz%20detectors%20based%20on%20three-dimensional%20meta-atoms&rft.jtitle=Optica&rft.au=Paulillo,%20B.&rft.date=2017-12-20&rft.volume=4&rft.issue=12&rft.spage=1451&rft.pages=1451-&rft.issn=2334-2536&rft.eissn=2334-2536&rft_id=info:doi/10.1364/OPTICA.4.001451&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02329183v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true