Loading…
Ultrafast terahertz detectors based on three-dimensional meta-atoms
Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In...
Saved in:
Published in: | Optica 2017-12, Vol.4 (12), p.1451 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23 |
container_end_page | |
container_issue | 12 |
container_start_page | 1451 |
container_title | Optica |
container_volume | 4 |
creator | Paulillo, B. Pirotta, S. Nong, H. Crozat, P. Guilet, S. Xu, G. Dhillon, S. Li, L. H. Davies, A. G. Linfield, E. H. Colombelli, R. |
description | Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In particular, semiconductor-based ultrafast THz receivers are required for compact, ultrafast spectroscopy and communication systems, and to date, quantum-well infrared photodetectors (QWIPs) have proved to be an excellent technology to address this, given their intrinsic picosecond-range response. However, with research focused on diffraction-limited QWIP structures (λ∕2), RC constants cannot be reduced indefinitely, and detection speeds are bound to eventually meet an upper limit. The key to an ultra-fast response with no intrinsic upper limit even at tens of gigahertz (GHz) is an aggressive reduction in device size, below the diffraction limit. Here we demonstrate sub-wavelength (λ∕10) THz QWIP detectors based on a 3D split-ring geometry, yielding ultra-fast operation at a wavelength of around 100 μm. Each sensing meta-atom pixel features a suspended loop antenna that feeds THz radiation in the ∼20 μm 3 active volume (V eff ∼3 × 10 −4 λ∕2 3). Arrays of detectors as well as single-pixel detectors have been implemented with this new architecture, with the latter exhibiting ultra-low dark currents below the nA level. This extremely small resonator architecture leads to measured optical response speeds-on arrays of 300 devices-of up to ∼3 GHz and an expected device operation of up to tens of GHz, based on the measured S parameters on single devices and arrays. |
doi_str_mv | 10.1364/OPTICA.4.001451 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02329183v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02329183v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrPXvfqYdtJJmmzx1LUCgv10J5DPmbpym5XkiDor7dlRXqaYXjm5eVh7JHDnONSLnbv-7fNei7nAFwqfsMmAlGWQuHy9mq_Z7OUPuAMoQRVwYRtDl2OtrEpF5miPVLMP0WgTD4PMRXOJgrFcCryMRKVoe3plNrhZLuip2xLm4c-PbC7xnaJZn9zyg4vz_vNtqx3r-dWdelRi1w2K5QKFTR8RQFVhVzY4MF5B4LrAAK8BK2dq9xKee3JO-68kBqD8I0XOGVPY-7RduYztr2N32awrdmua3O5gUBRcY1f_MwuRtbHIaVIzf8DB3NRZkZlRppRGf4CI1Retw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast terahertz detectors based on three-dimensional meta-atoms</title><source>EZB Free E-Journals</source><creator>Paulillo, B. ; Pirotta, S. ; Nong, H. ; Crozat, P. ; Guilet, S. ; Xu, G. ; Dhillon, S. ; Li, L. H. ; Davies, A. G. ; Linfield, E. H. ; Colombelli, R.</creator><creatorcontrib>Paulillo, B. ; Pirotta, S. ; Nong, H. ; Crozat, P. ; Guilet, S. ; Xu, G. ; Dhillon, S. ; Li, L. H. ; Davies, A. G. ; Linfield, E. H. ; Colombelli, R.</creatorcontrib><description>Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In particular, semiconductor-based ultrafast THz receivers are required for compact, ultrafast spectroscopy and communication systems, and to date, quantum-well infrared photodetectors (QWIPs) have proved to be an excellent technology to address this, given their intrinsic picosecond-range response. However, with research focused on diffraction-limited QWIP structures (λ∕2), RC constants cannot be reduced indefinitely, and detection speeds are bound to eventually meet an upper limit. The key to an ultra-fast response with no intrinsic upper limit even at tens of gigahertz (GHz) is an aggressive reduction in device size, below the diffraction limit. Here we demonstrate sub-wavelength (λ∕10) THz QWIP detectors based on a 3D split-ring geometry, yielding ultra-fast operation at a wavelength of around 100 μm. Each sensing meta-atom pixel features a suspended loop antenna that feeds THz radiation in the ∼20 μm 3 active volume (V eff ∼3 × 10 −4 λ∕2 3). Arrays of detectors as well as single-pixel detectors have been implemented with this new architecture, with the latter exhibiting ultra-low dark currents below the nA level. This extremely small resonator architecture leads to measured optical response speeds-on arrays of 300 devices-of up to ∼3 GHz and an expected device operation of up to tens of GHz, based on the measured S parameters on single devices and arrays.</description><identifier>ISSN: 2334-2536</identifier><identifier>EISSN: 2334-2536</identifier><identifier>DOI: 10.1364/OPTICA.4.001451</identifier><language>eng</language><publisher>Optical Society of America - OSA Publishing</publisher><subject>Condensed Matter ; Physics</subject><ispartof>Optica, 2017-12, Vol.4 (12), p.1451</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23</citedby><cites>FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23</cites><orcidid>0000-0002-5487-9570 ; 0000-0002-1540-9920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02329183$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulillo, B.</creatorcontrib><creatorcontrib>Pirotta, S.</creatorcontrib><creatorcontrib>Nong, H.</creatorcontrib><creatorcontrib>Crozat, P.</creatorcontrib><creatorcontrib>Guilet, S.</creatorcontrib><creatorcontrib>Xu, G.</creatorcontrib><creatorcontrib>Dhillon, S.</creatorcontrib><creatorcontrib>Li, L. H.</creatorcontrib><creatorcontrib>Davies, A. G.</creatorcontrib><creatorcontrib>Linfield, E. H.</creatorcontrib><creatorcontrib>Colombelli, R.</creatorcontrib><title>Ultrafast terahertz detectors based on three-dimensional meta-atoms</title><title>Optica</title><description>Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In particular, semiconductor-based ultrafast THz receivers are required for compact, ultrafast spectroscopy and communication systems, and to date, quantum-well infrared photodetectors (QWIPs) have proved to be an excellent technology to address this, given their intrinsic picosecond-range response. However, with research focused on diffraction-limited QWIP structures (λ∕2), RC constants cannot be reduced indefinitely, and detection speeds are bound to eventually meet an upper limit. The key to an ultra-fast response with no intrinsic upper limit even at tens of gigahertz (GHz) is an aggressive reduction in device size, below the diffraction limit. Here we demonstrate sub-wavelength (λ∕10) THz QWIP detectors based on a 3D split-ring geometry, yielding ultra-fast operation at a wavelength of around 100 μm. Each sensing meta-atom pixel features a suspended loop antenna that feeds THz radiation in the ∼20 μm 3 active volume (V eff ∼3 × 10 −4 λ∕2 3). Arrays of detectors as well as single-pixel detectors have been implemented with this new architecture, with the latter exhibiting ultra-low dark currents below the nA level. This extremely small resonator architecture leads to measured optical response speeds-on arrays of 300 devices-of up to ∼3 GHz and an expected device operation of up to tens of GHz, based on the measured S parameters on single devices and arrays.</description><subject>Condensed Matter</subject><subject>Physics</subject><issn>2334-2536</issn><issn>2334-2536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWGrPXvfqYdtJJmmzx1LUCgv10J5DPmbpym5XkiDor7dlRXqaYXjm5eVh7JHDnONSLnbv-7fNei7nAFwqfsMmAlGWQuHy9mq_Z7OUPuAMoQRVwYRtDl2OtrEpF5miPVLMP0WgTD4PMRXOJgrFcCryMRKVoe3plNrhZLuip2xLm4c-PbC7xnaJZn9zyg4vz_vNtqx3r-dWdelRi1w2K5QKFTR8RQFVhVzY4MF5B4LrAAK8BK2dq9xKee3JO-68kBqD8I0XOGVPY-7RduYztr2N32awrdmua3O5gUBRcY1f_MwuRtbHIaVIzf8DB3NRZkZlRppRGf4CI1Retw</recordid><startdate>20171220</startdate><enddate>20171220</enddate><creator>Paulillo, B.</creator><creator>Pirotta, S.</creator><creator>Nong, H.</creator><creator>Crozat, P.</creator><creator>Guilet, S.</creator><creator>Xu, G.</creator><creator>Dhillon, S.</creator><creator>Li, L. H.</creator><creator>Davies, A. G.</creator><creator>Linfield, E. H.</creator><creator>Colombelli, R.</creator><general>Optical Society of America - OSA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5487-9570</orcidid><orcidid>https://orcid.org/0000-0002-1540-9920</orcidid></search><sort><creationdate>20171220</creationdate><title>Ultrafast terahertz detectors based on three-dimensional meta-atoms</title><author>Paulillo, B. ; Pirotta, S. ; Nong, H. ; Crozat, P. ; Guilet, S. ; Xu, G. ; Dhillon, S. ; Li, L. H. ; Davies, A. G. ; Linfield, E. H. ; Colombelli, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulillo, B.</creatorcontrib><creatorcontrib>Pirotta, S.</creatorcontrib><creatorcontrib>Nong, H.</creatorcontrib><creatorcontrib>Crozat, P.</creatorcontrib><creatorcontrib>Guilet, S.</creatorcontrib><creatorcontrib>Xu, G.</creatorcontrib><creatorcontrib>Dhillon, S.</creatorcontrib><creatorcontrib>Li, L. H.</creatorcontrib><creatorcontrib>Davies, A. G.</creatorcontrib><creatorcontrib>Linfield, E. H.</creatorcontrib><creatorcontrib>Colombelli, R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Optica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulillo, B.</au><au>Pirotta, S.</au><au>Nong, H.</au><au>Crozat, P.</au><au>Guilet, S.</au><au>Xu, G.</au><au>Dhillon, S.</au><au>Li, L. H.</au><au>Davies, A. G.</au><au>Linfield, E. H.</au><au>Colombelli, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast terahertz detectors based on three-dimensional meta-atoms</atitle><jtitle>Optica</jtitle><date>2017-12-20</date><risdate>2017</risdate><volume>4</volume><issue>12</issue><spage>1451</spage><pages>1451-</pages><issn>2334-2536</issn><eissn>2334-2536</eissn><abstract>Terahertz (THz) and sub-THz frequency emitter and detector technologies are receiving increasing attention, underpinned by emerging applications in ultra-fast THz physics, frequency-combs technology and pulsed laser development in this relatively unexplored region of the electromagnetic spectrum. In particular, semiconductor-based ultrafast THz receivers are required for compact, ultrafast spectroscopy and communication systems, and to date, quantum-well infrared photodetectors (QWIPs) have proved to be an excellent technology to address this, given their intrinsic picosecond-range response. However, with research focused on diffraction-limited QWIP structures (λ∕2), RC constants cannot be reduced indefinitely, and detection speeds are bound to eventually meet an upper limit. The key to an ultra-fast response with no intrinsic upper limit even at tens of gigahertz (GHz) is an aggressive reduction in device size, below the diffraction limit. Here we demonstrate sub-wavelength (λ∕10) THz QWIP detectors based on a 3D split-ring geometry, yielding ultra-fast operation at a wavelength of around 100 μm. Each sensing meta-atom pixel features a suspended loop antenna that feeds THz radiation in the ∼20 μm 3 active volume (V eff ∼3 × 10 −4 λ∕2 3). Arrays of detectors as well as single-pixel detectors have been implemented with this new architecture, with the latter exhibiting ultra-low dark currents below the nA level. This extremely small resonator architecture leads to measured optical response speeds-on arrays of 300 devices-of up to ∼3 GHz and an expected device operation of up to tens of GHz, based on the measured S parameters on single devices and arrays.</abstract><pub>Optical Society of America - OSA Publishing</pub><doi>10.1364/OPTICA.4.001451</doi><orcidid>https://orcid.org/0000-0002-5487-9570</orcidid><orcidid>https://orcid.org/0000-0002-1540-9920</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2334-2536 |
ispartof | Optica, 2017-12, Vol.4 (12), p.1451 |
issn | 2334-2536 2334-2536 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02329183v1 |
source | EZB Free E-Journals |
subjects | Condensed Matter Physics |
title | Ultrafast terahertz detectors based on three-dimensional meta-atoms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20terahertz%20detectors%20based%20on%20three-dimensional%20meta-atoms&rft.jtitle=Optica&rft.au=Paulillo,%20B.&rft.date=2017-12-20&rft.volume=4&rft.issue=12&rft.spage=1451&rft.pages=1451-&rft.issn=2334-2536&rft.eissn=2334-2536&rft_id=info:doi/10.1364/OPTICA.4.001451&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02329183v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-f7345350f17ed359312adc0bcb0218d020c4088bb9b75c8cecb1bc2483d2cfc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |