Loading…
Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry
We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detecti...
Saved in:
Published in: | Journal of low temperature physics 2019-12, Vol.197 (5-6), p.348-356 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3 |
container_end_page | 356 |
container_issue | 5-6 |
container_start_page | 348 |
container_title | Journal of low temperature physics |
container_volume | 197 |
creator | Nguyen, Tuyen Tavakoli, Adib Triqueneaux, Sebastien Swami, Rahul Ruhtinas, Aki Gradel, Jeremy Garcia-Campos, Pablo Hasselbach, Klaus Frydman, Aviad Piot, Benjamin Gibert, Mathieu Collin, Eddy Bourgeois, Olivier |
description | We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin-film technology through applications in very different low-temperature use cases. We demonstrate that thin-film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance. |
doi_str_mv | 10.1007/s10909-019-02222-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02334220v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309916949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeATz5Ub5K26X0cw7nBUJDpa8ja1GWsy0zayf69mRV9MxACJ9853HsIuWZwxwDkfWCAgAmweHk8SX5CBiyTIpEik6dkAFFOOEd2Ti5CWAMAFrkYkNmTdUvbNfTJtt5Whi5WdksndtMEWjtP34w_0Ln7pAvT7IzXbecNfTHBhtbuj7TxjWtM6w-X5KzWm2Cuft4heZ08LMbTZP78OBuP5kkpULYJ4xlHKWtIOSDDSqIpl3We1zXyAlnBuAbIIC3iH1RY6TwtmQER9-MlVFoMyW2fu9IbtfO20f6gnLZqOpqrowZciJRz2LPI3vTszruPzoRWrV3nt3E8xWMishxTjBTvqdK7ELypf2MZqGO9qq9XxXrVd70qjybRm0KEt-_G_0X_4_oCqNh6sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309916949</pqid></control><display><type>article</type><title>Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry</title><source>Springer Nature</source><creator>Nguyen, Tuyen ; Tavakoli, Adib ; Triqueneaux, Sebastien ; Swami, Rahul ; Ruhtinas, Aki ; Gradel, Jeremy ; Garcia-Campos, Pablo ; Hasselbach, Klaus ; Frydman, Aviad ; Piot, Benjamin ; Gibert, Mathieu ; Collin, Eddy ; Bourgeois, Olivier</creator><creatorcontrib>Nguyen, Tuyen ; Tavakoli, Adib ; Triqueneaux, Sebastien ; Swami, Rahul ; Ruhtinas, Aki ; Gradel, Jeremy ; Garcia-Campos, Pablo ; Hasselbach, Klaus ; Frydman, Aviad ; Piot, Benjamin ; Gibert, Mathieu ; Collin, Eddy ; Bourgeois, Olivier</creatorcontrib><description>We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin-film technology through applications in very different low-temperature use cases. We demonstrate that thin-film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-019-02222-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Coefficient of variation ; Condensed Matter ; Condensed Matter Physics ; Electrical impedance ; Low temperature physics ; Magnetic Materials ; Magnetism ; Mesoscopic Systems and Quantum Hall Effect ; Niobium nitride ; Physics ; Physics and Astronomy ; Temperature ; Thermometry ; Thin films</subject><ispartof>Journal of low temperature physics, 2019-12, Vol.197 (5-6), p.348-356</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3</citedby><cites>FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3</cites><orcidid>0000-0002-5248-492X ; 0000-0002-0465-7400 ; 0000-0003-2122-8584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02334220$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Tuyen</creatorcontrib><creatorcontrib>Tavakoli, Adib</creatorcontrib><creatorcontrib>Triqueneaux, Sebastien</creatorcontrib><creatorcontrib>Swami, Rahul</creatorcontrib><creatorcontrib>Ruhtinas, Aki</creatorcontrib><creatorcontrib>Gradel, Jeremy</creatorcontrib><creatorcontrib>Garcia-Campos, Pablo</creatorcontrib><creatorcontrib>Hasselbach, Klaus</creatorcontrib><creatorcontrib>Frydman, Aviad</creatorcontrib><creatorcontrib>Piot, Benjamin</creatorcontrib><creatorcontrib>Gibert, Mathieu</creatorcontrib><creatorcontrib>Collin, Eddy</creatorcontrib><creatorcontrib>Bourgeois, Olivier</creatorcontrib><title>Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin-film technology through applications in very different low-temperature use cases. We demonstrate that thin-film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance.</description><subject>Characterization and Evaluation of Materials</subject><subject>Coefficient of variation</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Electrical impedance</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Niobium nitride</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature</subject><subject>Thermometry</subject><subject>Thin films</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKd_wKeATz5Ub5K26X0cw7nBUJDpa8ja1GWsy0zayf69mRV9MxACJ9853HsIuWZwxwDkfWCAgAmweHk8SX5CBiyTIpEik6dkAFFOOEd2Ti5CWAMAFrkYkNmTdUvbNfTJtt5Whi5WdksndtMEWjtP34w_0Ln7pAvT7IzXbecNfTHBhtbuj7TxjWtM6w-X5KzWm2Cuft4heZ08LMbTZP78OBuP5kkpULYJ4xlHKWtIOSDDSqIpl3We1zXyAlnBuAbIIC3iH1RY6TwtmQER9-MlVFoMyW2fu9IbtfO20f6gnLZqOpqrowZciJRz2LPI3vTszruPzoRWrV3nt3E8xWMishxTjBTvqdK7ELypf2MZqGO9qq9XxXrVd70qjybRm0KEt-_G_0X_4_oCqNh6sw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Nguyen, Tuyen</creator><creator>Tavakoli, Adib</creator><creator>Triqueneaux, Sebastien</creator><creator>Swami, Rahul</creator><creator>Ruhtinas, Aki</creator><creator>Gradel, Jeremy</creator><creator>Garcia-Campos, Pablo</creator><creator>Hasselbach, Klaus</creator><creator>Frydman, Aviad</creator><creator>Piot, Benjamin</creator><creator>Gibert, Mathieu</creator><creator>Collin, Eddy</creator><creator>Bourgeois, Olivier</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5248-492X</orcidid><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid><orcidid>https://orcid.org/0000-0003-2122-8584</orcidid></search><sort><creationdate>20191201</creationdate><title>Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry</title><author>Nguyen, Tuyen ; Tavakoli, Adib ; Triqueneaux, Sebastien ; Swami, Rahul ; Ruhtinas, Aki ; Gradel, Jeremy ; Garcia-Campos, Pablo ; Hasselbach, Klaus ; Frydman, Aviad ; Piot, Benjamin ; Gibert, Mathieu ; Collin, Eddy ; Bourgeois, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Coefficient of variation</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Electrical impedance</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Niobium nitride</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature</topic><topic>Thermometry</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Tuyen</creatorcontrib><creatorcontrib>Tavakoli, Adib</creatorcontrib><creatorcontrib>Triqueneaux, Sebastien</creatorcontrib><creatorcontrib>Swami, Rahul</creatorcontrib><creatorcontrib>Ruhtinas, Aki</creatorcontrib><creatorcontrib>Gradel, Jeremy</creatorcontrib><creatorcontrib>Garcia-Campos, Pablo</creatorcontrib><creatorcontrib>Hasselbach, Klaus</creatorcontrib><creatorcontrib>Frydman, Aviad</creatorcontrib><creatorcontrib>Piot, Benjamin</creatorcontrib><creatorcontrib>Gibert, Mathieu</creatorcontrib><creatorcontrib>Collin, Eddy</creatorcontrib><creatorcontrib>Bourgeois, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Tuyen</au><au>Tavakoli, Adib</au><au>Triqueneaux, Sebastien</au><au>Swami, Rahul</au><au>Ruhtinas, Aki</au><au>Gradel, Jeremy</au><au>Garcia-Campos, Pablo</au><au>Hasselbach, Klaus</au><au>Frydman, Aviad</au><au>Piot, Benjamin</au><au>Gibert, Mathieu</au><au>Collin, Eddy</au><au>Bourgeois, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>197</volume><issue>5-6</issue><spage>348</spage><epage>356</epage><pages>348-356</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin-film technology through applications in very different low-temperature use cases. We demonstrate that thin-film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-019-02222-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5248-492X</orcidid><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid><orcidid>https://orcid.org/0000-0003-2122-8584</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2019-12, Vol.197 (5-6), p.348-356 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02334220v1 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Coefficient of variation Condensed Matter Condensed Matter Physics Electrical impedance Low temperature physics Magnetic Materials Magnetism Mesoscopic Systems and Quantum Hall Effect Niobium nitride Physics Physics and Astronomy Temperature Thermometry Thin films |
title | Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Niobium%20Nitride%20Thin%20Films%20for%20Very%20Low%20Temperature%20Resistive%20Thermometry&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Nguyen,%20Tuyen&rft.date=2019-12-01&rft.volume=197&rft.issue=5-6&rft.spage=348&rft.epage=356&rft.pages=348-356&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-019-02222-6&rft_dat=%3Cproquest_hal_p%3E2309916949%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2309916949&rft_id=info:pmid/&rfr_iscdi=true |