Loading…

Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry

We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detecti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of low temperature physics 2019-12, Vol.197 (5-6), p.348-356
Main Authors: Nguyen, Tuyen, Tavakoli, Adib, Triqueneaux, Sebastien, Swami, Rahul, Ruhtinas, Aki, Gradel, Jeremy, Garcia-Campos, Pablo, Hasselbach, Klaus, Frydman, Aviad, Piot, Benjamin, Gibert, Mathieu, Collin, Eddy, Bourgeois, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3
cites cdi_FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3
container_end_page 356
container_issue 5-6
container_start_page 348
container_title Journal of low temperature physics
container_volume 197
creator Nguyen, Tuyen
Tavakoli, Adib
Triqueneaux, Sebastien
Swami, Rahul
Ruhtinas, Aki
Gradel, Jeremy
Garcia-Campos, Pablo
Hasselbach, Klaus
Frydman, Aviad
Piot, Benjamin
Gibert, Mathieu
Collin, Eddy
Bourgeois, Olivier
description We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin-film technology through applications in very different low-temperature use cases. We demonstrate that thin-film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance.
doi_str_mv 10.1007/s10909-019-02222-6
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02334220v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309916949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeATz5Ub5K26X0cw7nBUJDpa8ja1GWsy0zayf69mRV9MxACJ9853HsIuWZwxwDkfWCAgAmweHk8SX5CBiyTIpEik6dkAFFOOEd2Ti5CWAMAFrkYkNmTdUvbNfTJtt5Whi5WdksndtMEWjtP34w_0Ln7pAvT7IzXbecNfTHBhtbuj7TxjWtM6w-X5KzWm2Cuft4heZ08LMbTZP78OBuP5kkpULYJ4xlHKWtIOSDDSqIpl3We1zXyAlnBuAbIIC3iH1RY6TwtmQER9-MlVFoMyW2fu9IbtfO20f6gnLZqOpqrowZciJRz2LPI3vTszruPzoRWrV3nt3E8xWMishxTjBTvqdK7ELypf2MZqGO9qq9XxXrVd70qjybRm0KEt-_G_0X_4_oCqNh6sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309916949</pqid></control><display><type>article</type><title>Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry</title><source>Springer Nature</source><creator>Nguyen, Tuyen ; Tavakoli, Adib ; Triqueneaux, Sebastien ; Swami, Rahul ; Ruhtinas, Aki ; Gradel, Jeremy ; Garcia-Campos, Pablo ; Hasselbach, Klaus ; Frydman, Aviad ; Piot, Benjamin ; Gibert, Mathieu ; Collin, Eddy ; Bourgeois, Olivier</creator><creatorcontrib>Nguyen, Tuyen ; Tavakoli, Adib ; Triqueneaux, Sebastien ; Swami, Rahul ; Ruhtinas, Aki ; Gradel, Jeremy ; Garcia-Campos, Pablo ; Hasselbach, Klaus ; Frydman, Aviad ; Piot, Benjamin ; Gibert, Mathieu ; Collin, Eddy ; Bourgeois, Olivier</creatorcontrib><description>We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin-film technology through applications in very different low-temperature use cases. We demonstrate that thin-film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-019-02222-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Coefficient of variation ; Condensed Matter ; Condensed Matter Physics ; Electrical impedance ; Low temperature physics ; Magnetic Materials ; Magnetism ; Mesoscopic Systems and Quantum Hall Effect ; Niobium nitride ; Physics ; Physics and Astronomy ; Temperature ; Thermometry ; Thin films</subject><ispartof>Journal of low temperature physics, 2019-12, Vol.197 (5-6), p.348-356</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3</citedby><cites>FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3</cites><orcidid>0000-0002-5248-492X ; 0000-0002-0465-7400 ; 0000-0003-2122-8584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02334220$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Tuyen</creatorcontrib><creatorcontrib>Tavakoli, Adib</creatorcontrib><creatorcontrib>Triqueneaux, Sebastien</creatorcontrib><creatorcontrib>Swami, Rahul</creatorcontrib><creatorcontrib>Ruhtinas, Aki</creatorcontrib><creatorcontrib>Gradel, Jeremy</creatorcontrib><creatorcontrib>Garcia-Campos, Pablo</creatorcontrib><creatorcontrib>Hasselbach, Klaus</creatorcontrib><creatorcontrib>Frydman, Aviad</creatorcontrib><creatorcontrib>Piot, Benjamin</creatorcontrib><creatorcontrib>Gibert, Mathieu</creatorcontrib><creatorcontrib>Collin, Eddy</creatorcontrib><creatorcontrib>Bourgeois, Olivier</creatorcontrib><title>Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin-film technology through applications in very different low-temperature use cases. We demonstrate that thin-film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance.</description><subject>Characterization and Evaluation of Materials</subject><subject>Coefficient of variation</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Electrical impedance</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Niobium nitride</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature</subject><subject>Thermometry</subject><subject>Thin films</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKd_wKeATz5Ub5K26X0cw7nBUJDpa8ja1GWsy0zayf69mRV9MxACJ9853HsIuWZwxwDkfWCAgAmweHk8SX5CBiyTIpEik6dkAFFOOEd2Ti5CWAMAFrkYkNmTdUvbNfTJtt5Whi5WdksndtMEWjtP34w_0Ln7pAvT7IzXbecNfTHBhtbuj7TxjWtM6w-X5KzWm2Cuft4heZ08LMbTZP78OBuP5kkpULYJ4xlHKWtIOSDDSqIpl3We1zXyAlnBuAbIIC3iH1RY6TwtmQER9-MlVFoMyW2fu9IbtfO20f6gnLZqOpqrowZciJRz2LPI3vTszruPzoRWrV3nt3E8xWMishxTjBTvqdK7ELypf2MZqGO9qq9XxXrVd70qjybRm0KEt-_G_0X_4_oCqNh6sw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Nguyen, Tuyen</creator><creator>Tavakoli, Adib</creator><creator>Triqueneaux, Sebastien</creator><creator>Swami, Rahul</creator><creator>Ruhtinas, Aki</creator><creator>Gradel, Jeremy</creator><creator>Garcia-Campos, Pablo</creator><creator>Hasselbach, Klaus</creator><creator>Frydman, Aviad</creator><creator>Piot, Benjamin</creator><creator>Gibert, Mathieu</creator><creator>Collin, Eddy</creator><creator>Bourgeois, Olivier</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5248-492X</orcidid><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid><orcidid>https://orcid.org/0000-0003-2122-8584</orcidid></search><sort><creationdate>20191201</creationdate><title>Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry</title><author>Nguyen, Tuyen ; Tavakoli, Adib ; Triqueneaux, Sebastien ; Swami, Rahul ; Ruhtinas, Aki ; Gradel, Jeremy ; Garcia-Campos, Pablo ; Hasselbach, Klaus ; Frydman, Aviad ; Piot, Benjamin ; Gibert, Mathieu ; Collin, Eddy ; Bourgeois, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Coefficient of variation</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Electrical impedance</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Niobium nitride</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature</topic><topic>Thermometry</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Tuyen</creatorcontrib><creatorcontrib>Tavakoli, Adib</creatorcontrib><creatorcontrib>Triqueneaux, Sebastien</creatorcontrib><creatorcontrib>Swami, Rahul</creatorcontrib><creatorcontrib>Ruhtinas, Aki</creatorcontrib><creatorcontrib>Gradel, Jeremy</creatorcontrib><creatorcontrib>Garcia-Campos, Pablo</creatorcontrib><creatorcontrib>Hasselbach, Klaus</creatorcontrib><creatorcontrib>Frydman, Aviad</creatorcontrib><creatorcontrib>Piot, Benjamin</creatorcontrib><creatorcontrib>Gibert, Mathieu</creatorcontrib><creatorcontrib>Collin, Eddy</creatorcontrib><creatorcontrib>Bourgeois, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Tuyen</au><au>Tavakoli, Adib</au><au>Triqueneaux, Sebastien</au><au>Swami, Rahul</au><au>Ruhtinas, Aki</au><au>Gradel, Jeremy</au><au>Garcia-Campos, Pablo</au><au>Hasselbach, Klaus</au><au>Frydman, Aviad</au><au>Piot, Benjamin</au><au>Gibert, Mathieu</au><au>Collin, Eddy</au><au>Bourgeois, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>197</volume><issue>5-6</issue><spage>348</spage><epage>356</epage><pages>348-356</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin-film technology through applications in very different low-temperature use cases. We demonstrate that thin-film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-019-02222-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5248-492X</orcidid><orcidid>https://orcid.org/0000-0002-0465-7400</orcidid><orcidid>https://orcid.org/0000-0003-2122-8584</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2019-12, Vol.197 (5-6), p.348-356
issn 0022-2291
1573-7357
language eng
recordid cdi_hal_primary_oai_HAL_hal_02334220v1
source Springer Nature
subjects Characterization and Evaluation of Materials
Coefficient of variation
Condensed Matter
Condensed Matter Physics
Electrical impedance
Low temperature physics
Magnetic Materials
Magnetism
Mesoscopic Systems and Quantum Hall Effect
Niobium nitride
Physics
Physics and Astronomy
Temperature
Thermometry
Thin films
title Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Niobium%20Nitride%20Thin%20Films%20for%20Very%20Low%20Temperature%20Resistive%20Thermometry&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Nguyen,%20Tuyen&rft.date=2019-12-01&rft.volume=197&rft.issue=5-6&rft.spage=348&rft.epage=356&rft.pages=348-356&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-019-02222-6&rft_dat=%3Cproquest_hal_p%3E2309916949%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-1252977f0420919d79ecbf66ff92891812a00504819d0d9da64c1e030902c0da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2309916949&rft_id=info:pmid/&rfr_iscdi=true