Loading…

Faster Polynomial Multiplication over Finite Fields

Polynomials over finite fields play a central role in algorithms for cryptography, error correcting codes, and computer algebra. The complexity of multiplying such polynomials is still a major open problem. Let p be a prime, and let M p ( n ) denote the bit complexity of multiplying two polynomials...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the ACM 2017-02, Vol.63 (6), p.1-23
Main Authors: Harvey, David, Hoeven, Joris Van Der, Lecerf, Grégoire
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-f827f08c38aaecb1f7abad7527244a447c31b404cc61e43c8d56f05249424c3b3
cites cdi_FETCH-LOGICAL-c353t-f827f08c38aaecb1f7abad7527244a447c31b404cc61e43c8d56f05249424c3b3
container_end_page 23
container_issue 6
container_start_page 1
container_title Journal of the ACM
container_volume 63
creator Harvey, David
Hoeven, Joris Van Der
Lecerf, Grégoire
description Polynomials over finite fields play a central role in algorithms for cryptography, error correcting codes, and computer algebra. The complexity of multiplying such polynomials is still a major open problem. Let p be a prime, and let M p ( n ) denote the bit complexity of multiplying two polynomials in F p [ X ] of degree less than n . For n large compared to p , we establish the bound M p ( n ) = O ( n log n 8 log* n log p ), where log * n = min{ k ϵ N: log … k × … log n ≤ 1} stands for the iterated logarithm. This improves on the previously best known bound M p ( n ) = O ( n log n log log n log p ), which essentially goes back to the 1970s.
doi_str_mv 10.1145/3005344
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02350386v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4314249161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-f827f08c38aaecb1f7abad7527244a447c31b404cc61e43c8d56f05249424c3b3</originalsourceid><addsrcrecordid>eNpdkEFLAzEQhYMoWKv4Fwoe1MNqsjPZpMdSrBUqelDwFrJpFlPSTU12C_33prR48PSYmW-GN4-Qa0YfGEP-CJRyQDwhA8a5KATwr1MyoJRiwZGxc3KR0iqXtKRiQGCmU2fj6D34XRvWTvvRa-87t_HO6M6FdhS2eTxzretsFuuX6ZKcNdone3XUIfmcPX1M58Xi7fllOlkUBjh0RSNL0VBpQGptTc0aoWu9FLwUJaJGFAZYjRSNqZhFMHLJq4byEsdYooEahuT-cPdbe7WJbq3jTgXt1HyyUPseLYFTkNWWZfbuwG5i-Olt6tTaJWO9160NfVJMjkGOKc8rQ3LzD12FPrb5k0xVkjMhpczU7YEyMaQUbfPngFG1D1odg4ZfpmBsTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868517888</pqid></control><display><type>article</type><title>Faster Polynomial Multiplication over Finite Fields</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Harvey, David ; Hoeven, Joris Van Der ; Lecerf, Grégoire</creator><creatorcontrib>Harvey, David ; Hoeven, Joris Van Der ; Lecerf, Grégoire</creatorcontrib><description>Polynomials over finite fields play a central role in algorithms for cryptography, error correcting codes, and computer algebra. The complexity of multiplying such polynomials is still a major open problem. Let p be a prime, and let M p ( n ) denote the bit complexity of multiplying two polynomials in F p [ X ] of degree less than n . For n large compared to p , we establish the bound M p ( n ) = O ( n log n 8 log* n log p ), where log * n = min{ k ϵ N: log … k × … log n ≤ 1} stands for the iterated logarithm. This improves on the previously best known bound M p ( n ) = O ( n log n log log n log p ), which essentially goes back to the 1970s.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/3005344</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York: Association for Computing Machinery</publisher><subject>Algebra ; Algorithms ; Complexity ; Computer Science ; Cryptography ; Error correcting codes ; Logarithms ; Mathematical analysis ; Mathematical Software ; Polynomials ; Stands ; Studies</subject><ispartof>Journal of the ACM, 2017-02, Vol.63 (6), p.1-23</ispartof><rights>Copyright Association for Computing Machinery Feb 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-f827f08c38aaecb1f7abad7527244a447c31b404cc61e43c8d56f05249424c3b3</citedby><cites>FETCH-LOGICAL-c353t-f827f08c38aaecb1f7abad7527244a447c31b404cc61e43c8d56f05249424c3b3</cites><orcidid>0000-0003-2244-1897 ; 0000-0002-6066-6707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02350386$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Harvey, David</creatorcontrib><creatorcontrib>Hoeven, Joris Van Der</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><title>Faster Polynomial Multiplication over Finite Fields</title><title>Journal of the ACM</title><description>Polynomials over finite fields play a central role in algorithms for cryptography, error correcting codes, and computer algebra. The complexity of multiplying such polynomials is still a major open problem. Let p be a prime, and let M p ( n ) denote the bit complexity of multiplying two polynomials in F p [ X ] of degree less than n . For n large compared to p , we establish the bound M p ( n ) = O ( n log n 8 log* n log p ), where log * n = min{ k ϵ N: log … k × … log n ≤ 1} stands for the iterated logarithm. This improves on the previously best known bound M p ( n ) = O ( n log n log log n log p ), which essentially goes back to the 1970s.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Error correcting codes</subject><subject>Logarithms</subject><subject>Mathematical analysis</subject><subject>Mathematical Software</subject><subject>Polynomials</subject><subject>Stands</subject><subject>Studies</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLAzEQhYMoWKv4Fwoe1MNqsjPZpMdSrBUqelDwFrJpFlPSTU12C_33prR48PSYmW-GN4-Qa0YfGEP-CJRyQDwhA8a5KATwr1MyoJRiwZGxc3KR0iqXtKRiQGCmU2fj6D34XRvWTvvRa-87t_HO6M6FdhS2eTxzretsFuuX6ZKcNdone3XUIfmcPX1M58Xi7fllOlkUBjh0RSNL0VBpQGptTc0aoWu9FLwUJaJGFAZYjRSNqZhFMHLJq4byEsdYooEahuT-cPdbe7WJbq3jTgXt1HyyUPseLYFTkNWWZfbuwG5i-Olt6tTaJWO9160NfVJMjkGOKc8rQ3LzD12FPrb5k0xVkjMhpczU7YEyMaQUbfPngFG1D1odg4ZfpmBsTw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Harvey, David</creator><creator>Hoeven, Joris Van Der</creator><creator>Lecerf, Grégoire</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><orcidid>https://orcid.org/0000-0002-6066-6707</orcidid></search><sort><creationdate>20170201</creationdate><title>Faster Polynomial Multiplication over Finite Fields</title><author>Harvey, David ; Hoeven, Joris Van Der ; Lecerf, Grégoire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-f827f08c38aaecb1f7abad7527244a447c31b404cc61e43c8d56f05249424c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Error correcting codes</topic><topic>Logarithms</topic><topic>Mathematical analysis</topic><topic>Mathematical Software</topic><topic>Polynomials</topic><topic>Stands</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harvey, David</creatorcontrib><creatorcontrib>Hoeven, Joris Van Der</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harvey, David</au><au>Hoeven, Joris Van Der</au><au>Lecerf, Grégoire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster Polynomial Multiplication over Finite Fields</atitle><jtitle>Journal of the ACM</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>63</volume><issue>6</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>Polynomials over finite fields play a central role in algorithms for cryptography, error correcting codes, and computer algebra. The complexity of multiplying such polynomials is still a major open problem. Let p be a prime, and let M p ( n ) denote the bit complexity of multiplying two polynomials in F p [ X ] of degree less than n . For n large compared to p , we establish the bound M p ( n ) = O ( n log n 8 log* n log p ), where log * n = min{ k ϵ N: log … k × … log n ≤ 1} stands for the iterated logarithm. This improves on the previously best known bound M p ( n ) = O ( n log n log log n log p ), which essentially goes back to the 1970s.</abstract><cop>New York</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3005344</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><orcidid>https://orcid.org/0000-0002-6066-6707</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2017-02, Vol.63 (6), p.1-23
issn 0004-5411
1557-735X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02350386v1
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); BSC - Ebsco (Business Source Ultimate)
subjects Algebra
Algorithms
Complexity
Computer Science
Cryptography
Error correcting codes
Logarithms
Mathematical analysis
Mathematical Software
Polynomials
Stands
Studies
title Faster Polynomial Multiplication over Finite Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20Polynomial%20Multiplication%20over%20Finite%20Fields&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Harvey,%20David&rft.date=2017-02-01&rft.volume=63&rft.issue=6&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/3005344&rft_dat=%3Cproquest_hal_p%3E4314249161%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-f827f08c38aaecb1f7abad7527244a447c31b404cc61e43c8d56f05249424c3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1868517888&rft_id=info:pmid/&rfr_iscdi=true