Loading…

Upstream-travelling acoustic jet modes as a closure mechanism for screech

Experimental evidence is provided to demonstrate that the upstream-travelling waves in two jets screeching in the A1 and A2 modes are not free-stream acoustic waves, but rather waves with support within the jet. Proper orthogonal decomposition is used to educe the coherent fluctuations associated wi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2018-11, Vol.855, Article R1
Main Authors: Edgington-Mitchell, Daniel, Jaunet, Vincent, Jordan, Peter, Towne, Aaron, Soria, Julio, Honnery, Damon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Experimental evidence is provided to demonstrate that the upstream-travelling waves in two jets screeching in the A1 and A2 modes are not free-stream acoustic waves, but rather waves with support within the jet. Proper orthogonal decomposition is used to educe the coherent fluctuations associated with jet screech from a set of randomly sampled velocity fields. A streamwise Fourier transform is then used to isolate components with positive and negative phase speeds. The component with negative phase speed is shown, by comparison with a vortex-sheet model, to resemble the upstream-travelling jet wave first studied by Tam & Hu (J. Fluid Mech., vol. 201, 1989, pp. 447–483). It is further demonstrated that screech tones are only observed over the frequency range where this upstream-travelling wave is propagative.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2018.642