Loading…

Convergence theorems for inertial KM-type algorithms

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2008-09, Vol.219 (1), p.223-236
Main Author: MAINGE, Paul-Emile
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603
cites cdi_FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603
container_end_page 236
container_issue 1
container_start_page 223
container_title Journal of computational and applied mathematics
container_volume 219
creator MAINGE, Paul-Emile
description
doi_str_mv 10.1016/j.cam.2007.07.021
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02356764v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02356764v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-AG-9ePDQOvlo0h6Xoq644kXPYRKS3ZZ-kZSF_fe2rCy8MDC8zzA8hDxSyChQ-dJkFruMAahsCaNXZEULVaZUqeKarIArlYJg6pbcxdgAgCypWBFRDf3Rhb3rrUumgxuC62Lih5DUvQtTjW3y-ZVOp9El2O6HUE-HLt6TG49tdA__c01-315_qm26-37_qDa71PKcTamRXihmHLM0n3_h1pem8IZTpmQhUWDOJStQlNwZKNEYIRgaz43NQUkJfE2ez3cP2Oox1B2Gkx6w1tvNTi87YDyXSoojnbv03LVhiDE4fwEo6EWRbvSsSC-K9BK2ME9nZsRosfUBe1vHC8ggF8BB8j8BvmX7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence theorems for inertial KM-type algorithms</title><source>ScienceDirect Journals</source><creator>MAINGE, Paul-Emile</creator><creatorcontrib>MAINGE, Paul-Emile</creatorcontrib><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2007.07.021</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Acceleration of convergence ; Calculus of variations and optimal control ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Optimization and Control ; Ordinary differential equations ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of computational and applied mathematics, 2008-09, Vol.219 (1), p.223-236</ispartof><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603</citedby><cites>FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20540306$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-antilles.fr/hal-02356764$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>MAINGE, Paul-Emile</creatorcontrib><title>Convergence theorems for inertial KM-type algorithms</title><title>Journal of computational and applied mathematics</title><subject>Acceleration of convergence</subject><subject>Calculus of variations and optimal control</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Optimization and Control</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK7-AG-9ePDQOvlo0h6Xoq644kXPYRKS3ZZ-kZSF_fe2rCy8MDC8zzA8hDxSyChQ-dJkFruMAahsCaNXZEULVaZUqeKarIArlYJg6pbcxdgAgCypWBFRDf3Rhb3rrUumgxuC62Lih5DUvQtTjW3y-ZVOp9El2O6HUE-HLt6TG49tdA__c01-315_qm26-37_qDa71PKcTamRXihmHLM0n3_h1pem8IZTpmQhUWDOJStQlNwZKNEYIRgaz43NQUkJfE2ez3cP2Oox1B2Gkx6w1tvNTi87YDyXSoojnbv03LVhiDE4fwEo6EWRbvSsSC-K9BK2ME9nZsRosfUBe1vHC8ggF8BB8j8BvmX7</recordid><startdate>20080915</startdate><enddate>20080915</enddate><creator>MAINGE, Paul-Emile</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20080915</creationdate><title>Convergence theorems for inertial KM-type algorithms</title><author>MAINGE, Paul-Emile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration of convergence</topic><topic>Calculus of variations and optimal control</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Optimization and Control</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MAINGE, Paul-Emile</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAINGE, Paul-Emile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence theorems for inertial KM-type algorithms</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2008-09-15</date><risdate>2008</risdate><volume>219</volume><issue>1</issue><spage>223</spage><epage>236</epage><pages>223-236</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.cam.2007.07.021</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2008-09, Vol.219 (1), p.223-236
issn 0377-0427
1879-1778
language eng
recordid cdi_hal_primary_oai_HAL_hal_02356764v1
source ScienceDirect Journals
subjects Acceleration of convergence
Calculus of variations and optimal control
Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Optimization and Control
Ordinary differential equations
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Convergence theorems for inertial KM-type algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20theorems%20for%20inertial%20KM-type%20algorithms&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=MAINGE,%20Paul-Emile&rft.date=2008-09-15&rft.volume=219&rft.issue=1&rft.spage=223&rft.epage=236&rft.pages=223-236&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2007.07.021&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02356764v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true