Loading…
Convergence theorems for inertial KM-type algorithms
Saved in:
Published in: | Journal of computational and applied mathematics 2008-09, Vol.219 (1), p.223-236 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603 |
container_end_page | 236 |
container_issue | 1 |
container_start_page | 223 |
container_title | Journal of computational and applied mathematics |
container_volume | 219 |
creator | MAINGE, Paul-Emile |
description | |
doi_str_mv | 10.1016/j.cam.2007.07.021 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02356764v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02356764v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-AG-9ePDQOvlo0h6Xoq644kXPYRKS3ZZ-kZSF_fe2rCy8MDC8zzA8hDxSyChQ-dJkFruMAahsCaNXZEULVaZUqeKarIArlYJg6pbcxdgAgCypWBFRDf3Rhb3rrUumgxuC62Lih5DUvQtTjW3y-ZVOp9El2O6HUE-HLt6TG49tdA__c01-315_qm26-37_qDa71PKcTamRXihmHLM0n3_h1pem8IZTpmQhUWDOJStQlNwZKNEYIRgaz43NQUkJfE2ez3cP2Oox1B2Gkx6w1tvNTi87YDyXSoojnbv03LVhiDE4fwEo6EWRbvSsSC-K9BK2ME9nZsRosfUBe1vHC8ggF8BB8j8BvmX7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence theorems for inertial KM-type algorithms</title><source>ScienceDirect Journals</source><creator>MAINGE, Paul-Emile</creator><creatorcontrib>MAINGE, Paul-Emile</creatorcontrib><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2007.07.021</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Acceleration of convergence ; Calculus of variations and optimal control ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Optimization and Control ; Ordinary differential equations ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Journal of computational and applied mathematics, 2008-09, Vol.219 (1), p.223-236</ispartof><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603</citedby><cites>FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20540306$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-antilles.fr/hal-02356764$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>MAINGE, Paul-Emile</creatorcontrib><title>Convergence theorems for inertial KM-type algorithms</title><title>Journal of computational and applied mathematics</title><subject>Acceleration of convergence</subject><subject>Calculus of variations and optimal control</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Optimization and Control</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK7-AG-9ePDQOvlo0h6Xoq644kXPYRKS3ZZ-kZSF_fe2rCy8MDC8zzA8hDxSyChQ-dJkFruMAahsCaNXZEULVaZUqeKarIArlYJg6pbcxdgAgCypWBFRDf3Rhb3rrUumgxuC62Lih5DUvQtTjW3y-ZVOp9El2O6HUE-HLt6TG49tdA__c01-315_qm26-37_qDa71PKcTamRXihmHLM0n3_h1pem8IZTpmQhUWDOJStQlNwZKNEYIRgaz43NQUkJfE2ez3cP2Oox1B2Gkx6w1tvNTi87YDyXSoojnbv03LVhiDE4fwEo6EWRbvSsSC-K9BK2ME9nZsRosfUBe1vHC8ggF8BB8j8BvmX7</recordid><startdate>20080915</startdate><enddate>20080915</enddate><creator>MAINGE, Paul-Emile</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20080915</creationdate><title>Convergence theorems for inertial KM-type algorithms</title><author>MAINGE, Paul-Emile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration of convergence</topic><topic>Calculus of variations and optimal control</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Optimization and Control</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MAINGE, Paul-Emile</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAINGE, Paul-Emile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence theorems for inertial KM-type algorithms</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2008-09-15</date><risdate>2008</risdate><volume>219</volume><issue>1</issue><spage>223</spage><epage>236</epage><pages>223-236</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.cam.2007.07.021</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2008-09, Vol.219 (1), p.223-236 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02356764v1 |
source | ScienceDirect Journals |
subjects | Acceleration of convergence Calculus of variations and optimal control Exact sciences and technology Global analysis, analysis on manifolds Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Optimization and Control Ordinary differential equations Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Convergence theorems for inertial KM-type algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20theorems%20for%20inertial%20KM-type%20algorithms&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=MAINGE,%20Paul-Emile&rft.date=2008-09-15&rft.volume=219&rft.issue=1&rft.spage=223&rft.epage=236&rft.pages=223-236&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2007.07.021&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02356764v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-b6f472be2c151873cf9b8fb3127686a4a53628a493eb09abb442abf3bc5076603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |