Loading…
Mechanical properties of macroscopic magnetocrystals
•Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength...
Saved in:
Published in: | Journal of magnetism and magnetic materials 2019-06, Vol.479, p.149-155 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3 |
container_end_page | 155 |
container_issue | |
container_start_page | 149 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 479 |
creator | Hidalgo-Caballero, S. Escobar-Ortega, Y.Y. Becerra-Deana, R.I. Salazar, J.M. Pacheco-Vázquez, F. |
description | •Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength of hexagonal arrays.•Crystalline magnetic arrays are of potential use in the design of metamaterials.
We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals, were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kind of external stress applied. For instance, cP and Hx magnetocrystals subjected to tension exhibit a behavior akin to a brittle and ductile failure, respectively, but under bending the cP structure becomes ductile while the hexagonal lattice becomes brittle. For the hybrid structure, its elastic response and strength are enhanced or reduced depending on which crystallographic direction the stress is applied. These properties, so far unexplored, give to crystalline magnetic arrays a potential interest in the design of metamaterials. |
doi_str_mv | 10.1016/j.jmmm.2019.02.031 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02368623v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885318338101</els_id><sourcerecordid>2213876551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3</originalsourceid><addsrcrecordid>eNp9UMFKxDAUDKLguvoDnhY8eWh9L2nSCF6WRV1hxYueQ5qmbsq2WZPugn9vSsWj8OA9hpnhzRByjZAjoLhr87brupwC3udAc2B4QmYoS5YVpRCnZAYMikxKzs7JRYwtAGAhxYwUr9Zsde-M3i32we9tGJyNC98sOm2Cj8bvnUn3Z28Hb8J3HPQuXpKzJi179bvn5OPp8X21zjZvzy-r5SYzBYghY1hWhqOusaGCyzJNzagszXiCbDhU1rCEFLI2qAWnKLUWWqNueEUrNie3k-9W79Q-uE6Hb-W1U-vlRo0YUCakoOyIiXszcVOKr4ONg2r9IfTpPUUpMlkKzkcWnVhjthhs82eLoMYmVavGJtXYZLJXqckkephENmU9OhtUNM72xtYuWDOo2rv_5D-HX3rL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213876551</pqid></control><display><type>article</type><title>Mechanical properties of macroscopic magnetocrystals</title><source>ScienceDirect Freedom Collection</source><creator>Hidalgo-Caballero, S. ; Escobar-Ortega, Y.Y. ; Becerra-Deana, R.I. ; Salazar, J.M. ; Pacheco-Vázquez, F.</creator><creatorcontrib>Hidalgo-Caballero, S. ; Escobar-Ortega, Y.Y. ; Becerra-Deana, R.I. ; Salazar, J.M. ; Pacheco-Vázquez, F.</creatorcontrib><description>•Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength of hexagonal arrays.•Crystalline magnetic arrays are of potential use in the design of metamaterials.
We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals, were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kind of external stress applied. For instance, cP and Hx magnetocrystals subjected to tension exhibit a behavior akin to a brittle and ductile failure, respectively, but under bending the cP structure becomes ductile while the hexagonal lattice becomes brittle. For the hybrid structure, its elastic response and strength are enhanced or reduced depending on which crystallographic direction the stress is applied. These properties, so far unexplored, give to crystalline magnetic arrays a potential interest in the design of metamaterials.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2019.02.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Bending ; Bending stresses ; Brittleness ; Computer simulation ; Condensed Matter ; Crystal structure ; Crystallinity ; Crystallography ; Deformation ; Ductile-brittle transition ; Embrittlement ; Failure ; Fracture ; Hexagonal lattice ; Hybrid structures ; Isotropy ; Magnetic crystals ; Magnetic properties ; Mechanical analysis ; Mechanical properties ; Mechanical response ; Metamaterials ; Physics ; Statistical Mechanics ; Tensile strength ; Tensile stress ; Torsional strength</subject><ispartof>Journal of magnetism and magnetic materials, 2019-06, Vol.479, p.149-155</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2019</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3</citedby><cites>FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3</cites><orcidid>0000-0002-9574-4381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02368623$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hidalgo-Caballero, S.</creatorcontrib><creatorcontrib>Escobar-Ortega, Y.Y.</creatorcontrib><creatorcontrib>Becerra-Deana, R.I.</creatorcontrib><creatorcontrib>Salazar, J.M.</creatorcontrib><creatorcontrib>Pacheco-Vázquez, F.</creatorcontrib><title>Mechanical properties of macroscopic magnetocrystals</title><title>Journal of magnetism and magnetic materials</title><description>•Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength of hexagonal arrays.•Crystalline magnetic arrays are of potential use in the design of metamaterials.
We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals, were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kind of external stress applied. For instance, cP and Hx magnetocrystals subjected to tension exhibit a behavior akin to a brittle and ductile failure, respectively, but under bending the cP structure becomes ductile while the hexagonal lattice becomes brittle. For the hybrid structure, its elastic response and strength are enhanced or reduced depending on which crystallographic direction the stress is applied. These properties, so far unexplored, give to crystalline magnetic arrays a potential interest in the design of metamaterials.</description><subject>Anisotropy</subject><subject>Bending</subject><subject>Bending stresses</subject><subject>Brittleness</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Ductile-brittle transition</subject><subject>Embrittlement</subject><subject>Failure</subject><subject>Fracture</subject><subject>Hexagonal lattice</subject><subject>Hybrid structures</subject><subject>Isotropy</subject><subject>Magnetic crystals</subject><subject>Magnetic properties</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Mechanical response</subject><subject>Metamaterials</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Torsional strength</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAUDKLguvoDnhY8eWh9L2nSCF6WRV1hxYueQ5qmbsq2WZPugn9vSsWj8OA9hpnhzRByjZAjoLhr87brupwC3udAc2B4QmYoS5YVpRCnZAYMikxKzs7JRYwtAGAhxYwUr9Zsde-M3i32we9tGJyNC98sOm2Cj8bvnUn3Z28Hb8J3HPQuXpKzJi179bvn5OPp8X21zjZvzy-r5SYzBYghY1hWhqOusaGCyzJNzagszXiCbDhU1rCEFLI2qAWnKLUWWqNueEUrNie3k-9W79Q-uE6Hb-W1U-vlRo0YUCakoOyIiXszcVOKr4ONg2r9IfTpPUUpMlkKzkcWnVhjthhs82eLoMYmVavGJtXYZLJXqckkephENmU9OhtUNM72xtYuWDOo2rv_5D-HX3rL</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Hidalgo-Caballero, S.</creator><creator>Escobar-Ortega, Y.Y.</creator><creator>Becerra-Deana, R.I.</creator><creator>Salazar, J.M.</creator><creator>Pacheco-Vázquez, F.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9574-4381</orcidid></search><sort><creationdate>20190601</creationdate><title>Mechanical properties of macroscopic magnetocrystals</title><author>Hidalgo-Caballero, S. ; Escobar-Ortega, Y.Y. ; Becerra-Deana, R.I. ; Salazar, J.M. ; Pacheco-Vázquez, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Bending</topic><topic>Bending stresses</topic><topic>Brittleness</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Ductile-brittle transition</topic><topic>Embrittlement</topic><topic>Failure</topic><topic>Fracture</topic><topic>Hexagonal lattice</topic><topic>Hybrid structures</topic><topic>Isotropy</topic><topic>Magnetic crystals</topic><topic>Magnetic properties</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Mechanical response</topic><topic>Metamaterials</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Torsional strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hidalgo-Caballero, S.</creatorcontrib><creatorcontrib>Escobar-Ortega, Y.Y.</creatorcontrib><creatorcontrib>Becerra-Deana, R.I.</creatorcontrib><creatorcontrib>Salazar, J.M.</creatorcontrib><creatorcontrib>Pacheco-Vázquez, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidalgo-Caballero, S.</au><au>Escobar-Ortega, Y.Y.</au><au>Becerra-Deana, R.I.</au><au>Salazar, J.M.</au><au>Pacheco-Vázquez, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of macroscopic magnetocrystals</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>479</volume><spage>149</spage><epage>155</epage><pages>149-155</pages><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength of hexagonal arrays.•Crystalline magnetic arrays are of potential use in the design of metamaterials.
We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals, were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kind of external stress applied. For instance, cP and Hx magnetocrystals subjected to tension exhibit a behavior akin to a brittle and ductile failure, respectively, but under bending the cP structure becomes ductile while the hexagonal lattice becomes brittle. For the hybrid structure, its elastic response and strength are enhanced or reduced depending on which crystallographic direction the stress is applied. These properties, so far unexplored, give to crystalline magnetic arrays a potential interest in the design of metamaterials.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2019.02.031</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9574-4381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2019-06, Vol.479, p.149-155 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02368623v1 |
source | ScienceDirect Freedom Collection |
subjects | Anisotropy Bending Bending stresses Brittleness Computer simulation Condensed Matter Crystal structure Crystallinity Crystallography Deformation Ductile-brittle transition Embrittlement Failure Fracture Hexagonal lattice Hybrid structures Isotropy Magnetic crystals Magnetic properties Mechanical analysis Mechanical properties Mechanical response Metamaterials Physics Statistical Mechanics Tensile strength Tensile stress Torsional strength |
title | Mechanical properties of macroscopic magnetocrystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20macroscopic%20magnetocrystals&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Hidalgo-Caballero,%20S.&rft.date=2019-06-01&rft.volume=479&rft.spage=149&rft.epage=155&rft.pages=149-155&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2019.02.031&rft_dat=%3Cproquest_hal_p%3E2213876551%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2213876551&rft_id=info:pmid/&rfr_iscdi=true |