Loading…

Mechanical properties of macroscopic magnetocrystals

•Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2019-06, Vol.479, p.149-155
Main Authors: Hidalgo-Caballero, S., Escobar-Ortega, Y.Y., Becerra-Deana, R.I., Salazar, J.M., Pacheco-Vázquez, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3
cites cdi_FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3
container_end_page 155
container_issue
container_start_page 149
container_title Journal of magnetism and magnetic materials
container_volume 479
creator Hidalgo-Caballero, S.
Escobar-Ortega, Y.Y.
Becerra-Deana, R.I.
Salazar, J.M.
Pacheco-Vázquez, F.
description •Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength of hexagonal arrays.•Crystalline magnetic arrays are of potential use in the design of metamaterials. We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals, were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kind of external stress applied. For instance, cP and Hx magnetocrystals subjected to tension exhibit a behavior akin to a brittle and ductile failure, respectively, but under bending the cP structure becomes ductile while the hexagonal lattice becomes brittle. For the hybrid structure, its elastic response and strength are enhanced or reduced depending on which crystallographic direction the stress is applied. These properties, so far unexplored, give to crystalline magnetic arrays a potential interest in the design of metamaterials.
doi_str_mv 10.1016/j.jmmm.2019.02.031
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02368623v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885318338101</els_id><sourcerecordid>2213876551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3</originalsourceid><addsrcrecordid>eNp9UMFKxDAUDKLguvoDnhY8eWh9L2nSCF6WRV1hxYueQ5qmbsq2WZPugn9vSsWj8OA9hpnhzRByjZAjoLhr87brupwC3udAc2B4QmYoS5YVpRCnZAYMikxKzs7JRYwtAGAhxYwUr9Zsde-M3i32we9tGJyNC98sOm2Cj8bvnUn3Z28Hb8J3HPQuXpKzJi179bvn5OPp8X21zjZvzy-r5SYzBYghY1hWhqOusaGCyzJNzagszXiCbDhU1rCEFLI2qAWnKLUWWqNueEUrNie3k-9W79Q-uE6Hb-W1U-vlRo0YUCakoOyIiXszcVOKr4ONg2r9IfTpPUUpMlkKzkcWnVhjthhs82eLoMYmVavGJtXYZLJXqckkephENmU9OhtUNM72xtYuWDOo2rv_5D-HX3rL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2213876551</pqid></control><display><type>article</type><title>Mechanical properties of macroscopic magnetocrystals</title><source>ScienceDirect Freedom Collection</source><creator>Hidalgo-Caballero, S. ; Escobar-Ortega, Y.Y. ; Becerra-Deana, R.I. ; Salazar, J.M. ; Pacheco-Vázquez, F.</creator><creatorcontrib>Hidalgo-Caballero, S. ; Escobar-Ortega, Y.Y. ; Becerra-Deana, R.I. ; Salazar, J.M. ; Pacheco-Vázquez, F.</creatorcontrib><description>•Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength of hexagonal arrays.•Crystalline magnetic arrays are of potential use in the design of metamaterials. We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals, were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kind of external stress applied. For instance, cP and Hx magnetocrystals subjected to tension exhibit a behavior akin to a brittle and ductile failure, respectively, but under bending the cP structure becomes ductile while the hexagonal lattice becomes brittle. For the hybrid structure, its elastic response and strength are enhanced or reduced depending on which crystallographic direction the stress is applied. These properties, so far unexplored, give to crystalline magnetic arrays a potential interest in the design of metamaterials.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2019.02.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Bending ; Bending stresses ; Brittleness ; Computer simulation ; Condensed Matter ; Crystal structure ; Crystallinity ; Crystallography ; Deformation ; Ductile-brittle transition ; Embrittlement ; Failure ; Fracture ; Hexagonal lattice ; Hybrid structures ; Isotropy ; Magnetic crystals ; Magnetic properties ; Mechanical analysis ; Mechanical properties ; Mechanical response ; Metamaterials ; Physics ; Statistical Mechanics ; Tensile strength ; Tensile stress ; Torsional strength</subject><ispartof>Journal of magnetism and magnetic materials, 2019-06, Vol.479, p.149-155</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2019</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3</citedby><cites>FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3</cites><orcidid>0000-0002-9574-4381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02368623$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hidalgo-Caballero, S.</creatorcontrib><creatorcontrib>Escobar-Ortega, Y.Y.</creatorcontrib><creatorcontrib>Becerra-Deana, R.I.</creatorcontrib><creatorcontrib>Salazar, J.M.</creatorcontrib><creatorcontrib>Pacheco-Vázquez, F.</creatorcontrib><title>Mechanical properties of macroscopic magnetocrystals</title><title>Journal of magnetism and magnetic materials</title><description>•Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength of hexagonal arrays.•Crystalline magnetic arrays are of potential use in the design of metamaterials. We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals, were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kind of external stress applied. For instance, cP and Hx magnetocrystals subjected to tension exhibit a behavior akin to a brittle and ductile failure, respectively, but under bending the cP structure becomes ductile while the hexagonal lattice becomes brittle. For the hybrid structure, its elastic response and strength are enhanced or reduced depending on which crystallographic direction the stress is applied. These properties, so far unexplored, give to crystalline magnetic arrays a potential interest in the design of metamaterials.</description><subject>Anisotropy</subject><subject>Bending</subject><subject>Bending stresses</subject><subject>Brittleness</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography</subject><subject>Deformation</subject><subject>Ductile-brittle transition</subject><subject>Embrittlement</subject><subject>Failure</subject><subject>Fracture</subject><subject>Hexagonal lattice</subject><subject>Hybrid structures</subject><subject>Isotropy</subject><subject>Magnetic crystals</subject><subject>Magnetic properties</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Mechanical response</subject><subject>Metamaterials</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><subject>Tensile strength</subject><subject>Tensile stress</subject><subject>Torsional strength</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAUDKLguvoDnhY8eWh9L2nSCF6WRV1hxYueQ5qmbsq2WZPugn9vSsWj8OA9hpnhzRByjZAjoLhr87brupwC3udAc2B4QmYoS5YVpRCnZAYMikxKzs7JRYwtAGAhxYwUr9Zsde-M3i32we9tGJyNC98sOm2Cj8bvnUn3Z28Hb8J3HPQuXpKzJi179bvn5OPp8X21zjZvzy-r5SYzBYghY1hWhqOusaGCyzJNzagszXiCbDhU1rCEFLI2qAWnKLUWWqNueEUrNie3k-9W79Q-uE6Hb-W1U-vlRo0YUCakoOyIiXszcVOKr4ONg2r9IfTpPUUpMlkKzkcWnVhjthhs82eLoMYmVavGJtXYZLJXqckkephENmU9OhtUNM72xtYuWDOo2rv_5D-HX3rL</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Hidalgo-Caballero, S.</creator><creator>Escobar-Ortega, Y.Y.</creator><creator>Becerra-Deana, R.I.</creator><creator>Salazar, J.M.</creator><creator>Pacheco-Vázquez, F.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9574-4381</orcidid></search><sort><creationdate>20190601</creationdate><title>Mechanical properties of macroscopic magnetocrystals</title><author>Hidalgo-Caballero, S. ; Escobar-Ortega, Y.Y. ; Becerra-Deana, R.I. ; Salazar, J.M. ; Pacheco-Vázquez, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Bending</topic><topic>Bending stresses</topic><topic>Brittleness</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography</topic><topic>Deformation</topic><topic>Ductile-brittle transition</topic><topic>Embrittlement</topic><topic>Failure</topic><topic>Fracture</topic><topic>Hexagonal lattice</topic><topic>Hybrid structures</topic><topic>Isotropy</topic><topic>Magnetic crystals</topic><topic>Magnetic properties</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Mechanical response</topic><topic>Metamaterials</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><topic>Tensile strength</topic><topic>Tensile stress</topic><topic>Torsional strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hidalgo-Caballero, S.</creatorcontrib><creatorcontrib>Escobar-Ortega, Y.Y.</creatorcontrib><creatorcontrib>Becerra-Deana, R.I.</creatorcontrib><creatorcontrib>Salazar, J.M.</creatorcontrib><creatorcontrib>Pacheco-Vázquez, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidalgo-Caballero, S.</au><au>Escobar-Ortega, Y.Y.</au><au>Becerra-Deana, R.I.</au><au>Salazar, J.M.</au><au>Pacheco-Vázquez, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of macroscopic magnetocrystals</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>479</volume><spage>149</spage><epage>155</epage><pages>149-155</pages><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Magnetocrystals are brittle/ductile depending on the direction of applied stress.•Cubic magnetocrystals are ductile under tension and brittle under bending.•Hexagonal arrays are brittle under tension and ductile under bending.•Hybrid crystals combine the elasticity of cubic arrays with the strength of hexagonal arrays.•Crystalline magnetic arrays are of potential use in the design of metamaterials. We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals, were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kind of external stress applied. For instance, cP and Hx magnetocrystals subjected to tension exhibit a behavior akin to a brittle and ductile failure, respectively, but under bending the cP structure becomes ductile while the hexagonal lattice becomes brittle. For the hybrid structure, its elastic response and strength are enhanced or reduced depending on which crystallographic direction the stress is applied. These properties, so far unexplored, give to crystalline magnetic arrays a potential interest in the design of metamaterials.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2019.02.031</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9574-4381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2019-06, Vol.479, p.149-155
issn 0304-8853
1873-4766
language eng
recordid cdi_hal_primary_oai_HAL_hal_02368623v1
source ScienceDirect Freedom Collection
subjects Anisotropy
Bending
Bending stresses
Brittleness
Computer simulation
Condensed Matter
Crystal structure
Crystallinity
Crystallography
Deformation
Ductile-brittle transition
Embrittlement
Failure
Fracture
Hexagonal lattice
Hybrid structures
Isotropy
Magnetic crystals
Magnetic properties
Mechanical analysis
Mechanical properties
Mechanical response
Metamaterials
Physics
Statistical Mechanics
Tensile strength
Tensile stress
Torsional strength
title Mechanical properties of macroscopic magnetocrystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20macroscopic%20magnetocrystals&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Hidalgo-Caballero,%20S.&rft.date=2019-06-01&rft.volume=479&rft.spage=149&rft.epage=155&rft.pages=149-155&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2019.02.031&rft_dat=%3Cproquest_hal_p%3E2213876551%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-317bc51ad1f26587587d3287c875808f50bec332848dc1a65218aa6aa1af5b2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2213876551&rft_id=info:pmid/&rfr_iscdi=true