Loading…
An empirical analysis of the spatial variability of fuel prices in the United States
In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corr...
Saved in:
Published in: | Transportation research. Part A, Policy and practice Policy and practice, 2020-02, Vol.132, p.131-143 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33 |
container_end_page | 143 |
container_issue | |
container_start_page | 131 |
container_title | Transportation research. Part A, Policy and practice |
container_volume | 132 |
creator | Bergeaud, Antonin Raimbault, Juste |
description | In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong influence of the state in the level of price but also of some local characteristics including population density. Through the combination of such methods, we unveil the superposition of a governance process with a local socio-economical spatial process. The influence of population density on prices is furthermore consistent with a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We discuss developments and applications, including the elaboration of locally parametrized car-regulation policies. |
doi_str_mv | 10.1016/j.tra.2019.10.016 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02370106v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0965856418310784</els_id><sourcerecordid>oai_HAL_hal_02370106v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9i8MiTYcWI3YqoqaJEqMdDO1sW-qK7SpLJNpf57HIoYWXz2u_edfI-QR85yzrh83ufRQ14wXqd3npQrMuEzVWeFUNU1mbBaVtmskuUtuQthzxgrpSomZDPvKR6OzjsDHYUeunNwgQ4tjTuk4QjRJf0E3kHjOhfPY6v9wo4eE4KBuv7Hue1dREs_I0QM9-SmhS7gw2-dku3b62axytYfy_fFfJ2ZUlQx4wJLZI1oaqtKlELWdsbSCQpFJQslpUw3BU0BdQFlabGuBDMNGmOxsEJMydNl7g46nf5zAH_WAzi9mq_1qLG0PeNMnnjy8ovX-CEEj-0fwJkeI9R7nSLUY4SjlJTEvFwYTEucHHodjMPeoHUeTdR2cP_Q38seeQM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An empirical analysis of the spatial variability of fuel prices in the United States</title><source>Elsevier</source><creator>Bergeaud, Antonin ; Raimbault, Juste</creator><creatorcontrib>Bergeaud, Antonin ; Raimbault, Juste</creatorcontrib><description>In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong influence of the state in the level of price but also of some local characteristics including population density. Through the combination of such methods, we unveil the superposition of a governance process with a local socio-economical spatial process. The influence of population density on prices is furthermore consistent with a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We discuss developments and applications, including the elaboration of locally parametrized car-regulation policies.</description><identifier>ISSN: 0965-8564</identifier><identifier>EISSN: 1879-2375</identifier><identifier>DOI: 10.1016/j.tra.2019.10.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptation and Self-Organizing Systems ; Biodiversity and Ecology ; Cellular Automata and Lattice Gases ; Chaotic Dynamics ; Computational Finance ; Computer Science ; Data crawling ; Discrete Mathematics ; Environmental Sciences ; Fuel price ; Geographically weighted regression ; Geography ; Humanities and Social Sciences ; Machine Learning ; Multi-level modeling ; Multiagent Systems ; Nonlinear Sciences ; Quantitative Finance ; Spatial analysis ; Statistics</subject><ispartof>Transportation research. Part A, Policy and practice, 2020-02, Vol.132, p.131-143</ispartof><rights>2019 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33</citedby><cites>FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33</cites><orcidid>0000-0003-0768-9480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02370106$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergeaud, Antonin</creatorcontrib><creatorcontrib>Raimbault, Juste</creatorcontrib><title>An empirical analysis of the spatial variability of fuel prices in the United States</title><title>Transportation research. Part A, Policy and practice</title><description>In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong influence of the state in the level of price but also of some local characteristics including population density. Through the combination of such methods, we unveil the superposition of a governance process with a local socio-economical spatial process. The influence of population density on prices is furthermore consistent with a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We discuss developments and applications, including the elaboration of locally parametrized car-regulation policies.</description><subject>Adaptation and Self-Organizing Systems</subject><subject>Biodiversity and Ecology</subject><subject>Cellular Automata and Lattice Gases</subject><subject>Chaotic Dynamics</subject><subject>Computational Finance</subject><subject>Computer Science</subject><subject>Data crawling</subject><subject>Discrete Mathematics</subject><subject>Environmental Sciences</subject><subject>Fuel price</subject><subject>Geographically weighted regression</subject><subject>Geography</subject><subject>Humanities and Social Sciences</subject><subject>Machine Learning</subject><subject>Multi-level modeling</subject><subject>Multiagent Systems</subject><subject>Nonlinear Sciences</subject><subject>Quantitative Finance</subject><subject>Spatial analysis</subject><subject>Statistics</subject><issn>0965-8564</issn><issn>1879-2375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9i8MiTYcWI3YqoqaJEqMdDO1sW-qK7SpLJNpf57HIoYWXz2u_edfI-QR85yzrh83ufRQ14wXqd3npQrMuEzVWeFUNU1mbBaVtmskuUtuQthzxgrpSomZDPvKR6OzjsDHYUeunNwgQ4tjTuk4QjRJf0E3kHjOhfPY6v9wo4eE4KBuv7Hue1dREs_I0QM9-SmhS7gw2-dku3b62axytYfy_fFfJ2ZUlQx4wJLZI1oaqtKlELWdsbSCQpFJQslpUw3BU0BdQFlabGuBDMNGmOxsEJMydNl7g46nf5zAH_WAzi9mq_1qLG0PeNMnnjy8ovX-CEEj-0fwJkeI9R7nSLUY4SjlJTEvFwYTEucHHodjMPeoHUeTdR2cP_Q38seeQM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Bergeaud, Antonin</creator><creator>Raimbault, Juste</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0003-0768-9480</orcidid></search><sort><creationdate>20200201</creationdate><title>An empirical analysis of the spatial variability of fuel prices in the United States</title><author>Bergeaud, Antonin ; Raimbault, Juste</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation and Self-Organizing Systems</topic><topic>Biodiversity and Ecology</topic><topic>Cellular Automata and Lattice Gases</topic><topic>Chaotic Dynamics</topic><topic>Computational Finance</topic><topic>Computer Science</topic><topic>Data crawling</topic><topic>Discrete Mathematics</topic><topic>Environmental Sciences</topic><topic>Fuel price</topic><topic>Geographically weighted regression</topic><topic>Geography</topic><topic>Humanities and Social Sciences</topic><topic>Machine Learning</topic><topic>Multi-level modeling</topic><topic>Multiagent Systems</topic><topic>Nonlinear Sciences</topic><topic>Quantitative Finance</topic><topic>Spatial analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergeaud, Antonin</creatorcontrib><creatorcontrib>Raimbault, Juste</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Transportation research. Part A, Policy and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergeaud, Antonin</au><au>Raimbault, Juste</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical analysis of the spatial variability of fuel prices in the United States</atitle><jtitle>Transportation research. Part A, Policy and practice</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>132</volume><spage>131</spage><epage>143</epage><pages>131-143</pages><issn>0965-8564</issn><eissn>1879-2375</eissn><abstract>In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong influence of the state in the level of price but also of some local characteristics including population density. Through the combination of such methods, we unveil the superposition of a governance process with a local socio-economical spatial process. The influence of population density on prices is furthermore consistent with a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We discuss developments and applications, including the elaboration of locally parametrized car-regulation policies.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tra.2019.10.016</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0768-9480</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-8564 |
ispartof | Transportation research. Part A, Policy and practice, 2020-02, Vol.132, p.131-143 |
issn | 0965-8564 1879-2375 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02370106v1 |
source | Elsevier |
subjects | Adaptation and Self-Organizing Systems Biodiversity and Ecology Cellular Automata and Lattice Gases Chaotic Dynamics Computational Finance Computer Science Data crawling Discrete Mathematics Environmental Sciences Fuel price Geographically weighted regression Geography Humanities and Social Sciences Machine Learning Multi-level modeling Multiagent Systems Nonlinear Sciences Quantitative Finance Spatial analysis Statistics |
title | An empirical analysis of the spatial variability of fuel prices in the United States |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20analysis%20of%20the%20spatial%20variability%20of%20fuel%20prices%20in%20the%20United%20States&rft.jtitle=Transportation%20research.%20Part%20A,%20Policy%20and%20practice&rft.au=Bergeaud,%20Antonin&rft.date=2020-02-01&rft.volume=132&rft.spage=131&rft.epage=143&rft.pages=131-143&rft.issn=0965-8564&rft.eissn=1879-2375&rft_id=info:doi/10.1016/j.tra.2019.10.016&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02370106v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |