Loading…

An empirical analysis of the spatial variability of fuel prices in the United States

In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corr...

Full description

Saved in:
Bibliographic Details
Published in:Transportation research. Part A, Policy and practice Policy and practice, 2020-02, Vol.132, p.131-143
Main Authors: Bergeaud, Antonin, Raimbault, Juste
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33
cites cdi_FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33
container_end_page 143
container_issue
container_start_page 131
container_title Transportation research. Part A, Policy and practice
container_volume 132
creator Bergeaud, Antonin
Raimbault, Juste
description In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong influence of the state in the level of price but also of some local characteristics including population density. Through the combination of such methods, we unveil the superposition of a governance process with a local socio-economical spatial process. The influence of population density on prices is furthermore consistent with a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We discuss developments and applications, including the elaboration of locally parametrized car-regulation policies.
doi_str_mv 10.1016/j.tra.2019.10.016
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02370106v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0965856418310784</els_id><sourcerecordid>oai_HAL_hal_02370106v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9i8MiTYcWI3YqoqaJEqMdDO1sW-qK7SpLJNpf57HIoYWXz2u_edfI-QR85yzrh83ufRQ14wXqd3npQrMuEzVWeFUNU1mbBaVtmskuUtuQthzxgrpSomZDPvKR6OzjsDHYUeunNwgQ4tjTuk4QjRJf0E3kHjOhfPY6v9wo4eE4KBuv7Hue1dREs_I0QM9-SmhS7gw2-dku3b62axytYfy_fFfJ2ZUlQx4wJLZI1oaqtKlELWdsbSCQpFJQslpUw3BU0BdQFlabGuBDMNGmOxsEJMydNl7g46nf5zAH_WAzi9mq_1qLG0PeNMnnjy8ovX-CEEj-0fwJkeI9R7nSLUY4SjlJTEvFwYTEucHHodjMPeoHUeTdR2cP_Q38seeQM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An empirical analysis of the spatial variability of fuel prices in the United States</title><source>Elsevier</source><creator>Bergeaud, Antonin ; Raimbault, Juste</creator><creatorcontrib>Bergeaud, Antonin ; Raimbault, Juste</creatorcontrib><description>In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong influence of the state in the level of price but also of some local characteristics including population density. Through the combination of such methods, we unveil the superposition of a governance process with a local socio-economical spatial process. The influence of population density on prices is furthermore consistent with a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We discuss developments and applications, including the elaboration of locally parametrized car-regulation policies.</description><identifier>ISSN: 0965-8564</identifier><identifier>EISSN: 1879-2375</identifier><identifier>DOI: 10.1016/j.tra.2019.10.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptation and Self-Organizing Systems ; Biodiversity and Ecology ; Cellular Automata and Lattice Gases ; Chaotic Dynamics ; Computational Finance ; Computer Science ; Data crawling ; Discrete Mathematics ; Environmental Sciences ; Fuel price ; Geographically weighted regression ; Geography ; Humanities and Social Sciences ; Machine Learning ; Multi-level modeling ; Multiagent Systems ; Nonlinear Sciences ; Quantitative Finance ; Spatial analysis ; Statistics</subject><ispartof>Transportation research. Part A, Policy and practice, 2020-02, Vol.132, p.131-143</ispartof><rights>2019 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33</citedby><cites>FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33</cites><orcidid>0000-0003-0768-9480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02370106$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergeaud, Antonin</creatorcontrib><creatorcontrib>Raimbault, Juste</creatorcontrib><title>An empirical analysis of the spatial variability of fuel prices in the United States</title><title>Transportation research. Part A, Policy and practice</title><description>In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong influence of the state in the level of price but also of some local characteristics including population density. Through the combination of such methods, we unveil the superposition of a governance process with a local socio-economical spatial process. The influence of population density on prices is furthermore consistent with a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We discuss developments and applications, including the elaboration of locally parametrized car-regulation policies.</description><subject>Adaptation and Self-Organizing Systems</subject><subject>Biodiversity and Ecology</subject><subject>Cellular Automata and Lattice Gases</subject><subject>Chaotic Dynamics</subject><subject>Computational Finance</subject><subject>Computer Science</subject><subject>Data crawling</subject><subject>Discrete Mathematics</subject><subject>Environmental Sciences</subject><subject>Fuel price</subject><subject>Geographically weighted regression</subject><subject>Geography</subject><subject>Humanities and Social Sciences</subject><subject>Machine Learning</subject><subject>Multi-level modeling</subject><subject>Multiagent Systems</subject><subject>Nonlinear Sciences</subject><subject>Quantitative Finance</subject><subject>Spatial analysis</subject><subject>Statistics</subject><issn>0965-8564</issn><issn>1879-2375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9i8MiTYcWI3YqoqaJEqMdDO1sW-qK7SpLJNpf57HIoYWXz2u_edfI-QR85yzrh83ufRQ14wXqd3npQrMuEzVWeFUNU1mbBaVtmskuUtuQthzxgrpSomZDPvKR6OzjsDHYUeunNwgQ4tjTuk4QjRJf0E3kHjOhfPY6v9wo4eE4KBuv7Hue1dREs_I0QM9-SmhS7gw2-dku3b62axytYfy_fFfJ2ZUlQx4wJLZI1oaqtKlELWdsbSCQpFJQslpUw3BU0BdQFlabGuBDMNGmOxsEJMydNl7g46nf5zAH_WAzi9mq_1qLG0PeNMnnjy8ovX-CEEj-0fwJkeI9R7nSLUY4SjlJTEvFwYTEucHHodjMPeoHUeTdR2cP_Q38seeQM</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Bergeaud, Antonin</creator><creator>Raimbault, Juste</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0003-0768-9480</orcidid></search><sort><creationdate>20200201</creationdate><title>An empirical analysis of the spatial variability of fuel prices in the United States</title><author>Bergeaud, Antonin ; Raimbault, Juste</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation and Self-Organizing Systems</topic><topic>Biodiversity and Ecology</topic><topic>Cellular Automata and Lattice Gases</topic><topic>Chaotic Dynamics</topic><topic>Computational Finance</topic><topic>Computer Science</topic><topic>Data crawling</topic><topic>Discrete Mathematics</topic><topic>Environmental Sciences</topic><topic>Fuel price</topic><topic>Geographically weighted regression</topic><topic>Geography</topic><topic>Humanities and Social Sciences</topic><topic>Machine Learning</topic><topic>Multi-level modeling</topic><topic>Multiagent Systems</topic><topic>Nonlinear Sciences</topic><topic>Quantitative Finance</topic><topic>Spatial analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergeaud, Antonin</creatorcontrib><creatorcontrib>Raimbault, Juste</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Transportation research. Part A, Policy and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergeaud, Antonin</au><au>Raimbault, Juste</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical analysis of the spatial variability of fuel prices in the United States</atitle><jtitle>Transportation research. Part A, Policy and practice</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>132</volume><spage>131</spage><epage>143</epage><pages>131-143</pages><issn>0965-8564</issn><eissn>1879-2375</eissn><abstract>In this paper, we use a newly constructed dataset to study the geographic distribution of fuel price across the US at a very high resolution. We study the influence of socio-economic variables through different and complementary statistical methods. We highlight an optimal spatial range roughly corresponding to stationarity scale, and significant influence of variables such as median income, wage with a non-simple spatial behavior that confirms the importance of geographical particularities. On the other hand, multi-level modeling reveals a strong influence of the state in the level of price but also of some local characteristics including population density. Through the combination of such methods, we unveil the superposition of a governance process with a local socio-economical spatial process. The influence of population density on prices is furthermore consistent with a minimal theoretical model of competition between gas stations, that we introduce and solve numerically. We discuss developments and applications, including the elaboration of locally parametrized car-regulation policies.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tra.2019.10.016</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0768-9480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0965-8564
ispartof Transportation research. Part A, Policy and practice, 2020-02, Vol.132, p.131-143
issn 0965-8564
1879-2375
language eng
recordid cdi_hal_primary_oai_HAL_hal_02370106v1
source Elsevier
subjects Adaptation and Self-Organizing Systems
Biodiversity and Ecology
Cellular Automata and Lattice Gases
Chaotic Dynamics
Computational Finance
Computer Science
Data crawling
Discrete Mathematics
Environmental Sciences
Fuel price
Geographically weighted regression
Geography
Humanities and Social Sciences
Machine Learning
Multi-level modeling
Multiagent Systems
Nonlinear Sciences
Quantitative Finance
Spatial analysis
Statistics
title An empirical analysis of the spatial variability of fuel prices in the United States
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20analysis%20of%20the%20spatial%20variability%20of%20fuel%20prices%20in%20the%20United%20States&rft.jtitle=Transportation%20research.%20Part%20A,%20Policy%20and%20practice&rft.au=Bergeaud,%20Antonin&rft.date=2020-02-01&rft.volume=132&rft.spage=131&rft.epage=143&rft.pages=131-143&rft.issn=0965-8564&rft.eissn=1879-2375&rft_id=info:doi/10.1016/j.tra.2019.10.016&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02370106v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-13e4e0b3b9d74e6369d80369a7e356276667e37ab2a92a44de9530cbeccde2d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true