Loading…

Niobium Alloying of Self‐Organized TiO 2 Nanotubes as an Anode for Lithium‐Ion Microbatteries

Self‐supported titanium dioxide nanotube is explored as a potential negative electrode for 3D Li‐ion (micro) batteries. Apart from the direct contact of the nanotubes with the substrate, the 1D porous structure effectively facilitates the flow of electrolyte into the bulk, alleviates any volume expa...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials technologies 2018-03, Vol.3 (3)
Main Authors: Salian, Girish D., Koo, Bon Min, Lefevre, Christophe, Cottineau, Thomas, Lebouin, Chrystelle, Tesfaye, Alexander T., Knauth, Philippe, Keller, Valerie, Djenizian, Thierry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Self‐supported titanium dioxide nanotube is explored as a potential negative electrode for 3D Li‐ion (micro) batteries. Apart from the direct contact of the nanotubes with the substrate, the 1D porous structure effectively facilitates the flow of electrolyte into the bulk, alleviates any volume expansion during cycling, and provides a short lithium‐ion diffusion length. The fabrication of self‐supported Nb rich titanium dioxide nanotubes by electrochemical anodization of Ti–Nb alloys is reported. The structure, morphology, and the composition of the Nb alloyed TiO 2 nanotubes are studied using scanning electron microscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy. The electrochemical behavior of the alloyed and the pristine TiO 2 nanotubes is investigated by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy. The electrochemical performance of the pristine and the alloyed titania nanotubes reveals that as the niobium concentration increases the capacity increases. The titania nanotubes containing 10 wt% of Nb deliver a higher capacity, with good capacity retention and coulombic efficiency. Electrochemical impedance spectroscopy analysis shows that Nb alloying can decrease the overall cell impedance by reducing the charge transfer resistance.
ISSN:2365-709X
2365-709X
DOI:10.1002/admt.201700274