Loading…
Computational fluid dynamics modeling for the design of Archimedes Screw Generator
The Archimedean Screw Generator (ASG) allows transforming potential energy of a fluid into mechanical energy and is convenient for low-head hydraulic sites. As it is a new and growing technology with few guidelines for design and performance optimization, the present contribution proposes a new expe...
Saved in:
Published in: | Renewable energy 2018-04, Vol.118, p.847-857 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-a8e30a547f2689f8e76f0ce7d8bc6784619afbd95eae4321a6dd20fb9636868e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-a8e30a547f2689f8e76f0ce7d8bc6784619afbd95eae4321a6dd20fb9636868e3 |
container_end_page | 857 |
container_issue | |
container_start_page | 847 |
container_title | Renewable energy |
container_volume | 118 |
creator | Dellinger, Guilhem Garambois, Pierre-André Dellinger, Nicolas Dufresne, Matthieu Terfous, Abdelali Vazquez, Jose Ghenaim, Abdellah |
description | The Archimedean Screw Generator (ASG) allows transforming potential energy of a fluid into mechanical energy and is convenient for low-head hydraulic sites. As it is a new and growing technology with few guidelines for design and performance optimization, the present contribution proposes a new experimental and numerical investigation method for studying ASG performances. In order to study the structure of 3D turbulent flows and energy losses in a screw, the Navier Stokes equations a classical turbulence model are solved. As demonstrated, the strength of this method is to allow studying accurately the ASG performance only with usual coefficients in the turbulent closure models. These simulations are achieved for various flow conditions using the geometry of a laboratory-scale screw. It is shown that, the modeled values of torques and efficiencies are in very strong agreement with the experimental ones. Moreover, numerical simulation appears to be a reliable tool for predicting ASG performance which are found higher than 80%.
•3D numerical model is developed to determine the Archimedean Screw Turbine performance.•Experimental results of a laboratory scale Archimedes screw.•Good agreement between numerical and experimental values. |
doi_str_mv | 10.1016/j.renene.2017.10.093 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02381975v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148117310613</els_id><sourcerecordid>oai_HAL_hal_02381975v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-a8e30a547f2689f8e76f0ce7d8bc6784619afbd95eae4321a6dd20fb9636868e3</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoWnaf9CDrj3YlWxHj0shhDYpBAp9nIUirRIF2wqyk5J_XxmXHsseFj5mht1B6J6SnBLKHvd5hDZNXhDKE8qJLC_QhAouM8JEcYkmRDKS0UrQa3TTdXtC6EzwaoLeF6E5HHvd-9DqGrv66C2251Y33nS4CRZq326xCxH3O8AWOr9tcXB4Hs3ON5AA_jARvvEyHRB1H-ItunK67uDud0_R18vz52KVrd-Wr4v5OjMll32mBZREzyruCiakE8CZIwa4FRvDuKgYldptrJyBhqosqGbWFsRtJCuZYMk8RQ9j7k7X6hB9o-NZBe3Var5WAyNFKajksxNN2mrUmhi6LoL7M1Cihg7VXo0dqqHDgaYOk-1ptEH64-Qhqs54aA1YH8H0ygb_f8APprl82g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational fluid dynamics modeling for the design of Archimedes Screw Generator</title><source>ScienceDirect Freedom Collection</source><creator>Dellinger, Guilhem ; Garambois, Pierre-André ; Dellinger, Nicolas ; Dufresne, Matthieu ; Terfous, Abdelali ; Vazquez, Jose ; Ghenaim, Abdellah</creator><creatorcontrib>Dellinger, Guilhem ; Garambois, Pierre-André ; Dellinger, Nicolas ; Dufresne, Matthieu ; Terfous, Abdelali ; Vazquez, Jose ; Ghenaim, Abdellah</creatorcontrib><description>The Archimedean Screw Generator (ASG) allows transforming potential energy of a fluid into mechanical energy and is convenient for low-head hydraulic sites. As it is a new and growing technology with few guidelines for design and performance optimization, the present contribution proposes a new experimental and numerical investigation method for studying ASG performances. In order to study the structure of 3D turbulent flows and energy losses in a screw, the Navier Stokes equations a classical turbulence model are solved. As demonstrated, the strength of this method is to allow studying accurately the ASG performance only with usual coefficients in the turbulent closure models. These simulations are achieved for various flow conditions using the geometry of a laboratory-scale screw. It is shown that, the modeled values of torques and efficiencies are in very strong agreement with the experimental ones. Moreover, numerical simulation appears to be a reliable tool for predicting ASG performance which are found higher than 80%.
•3D numerical model is developed to determine the Archimedean Screw Turbine performance.•Experimental results of a laboratory scale Archimedes screw.•Good agreement between numerical and experimental values.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2017.10.093</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Archimedes Screw Generator ; CFD ; Engineering Sciences ; Experimental facilities ; Hydropower plant ; Other ; Water power</subject><ispartof>Renewable energy, 2018-04, Vol.118, p.847-857</ispartof><rights>2017 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-a8e30a547f2689f8e76f0ce7d8bc6784619afbd95eae4321a6dd20fb9636868e3</citedby><cites>FETCH-LOGICAL-c379t-a8e30a547f2689f8e76f0ce7d8bc6784619afbd95eae4321a6dd20fb9636868e3</cites><orcidid>0000-0002-6148-9335 ; 0000-0001-8350-6741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02381975$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dellinger, Guilhem</creatorcontrib><creatorcontrib>Garambois, Pierre-André</creatorcontrib><creatorcontrib>Dellinger, Nicolas</creatorcontrib><creatorcontrib>Dufresne, Matthieu</creatorcontrib><creatorcontrib>Terfous, Abdelali</creatorcontrib><creatorcontrib>Vazquez, Jose</creatorcontrib><creatorcontrib>Ghenaim, Abdellah</creatorcontrib><title>Computational fluid dynamics modeling for the design of Archimedes Screw Generator</title><title>Renewable energy</title><description>The Archimedean Screw Generator (ASG) allows transforming potential energy of a fluid into mechanical energy and is convenient for low-head hydraulic sites. As it is a new and growing technology with few guidelines for design and performance optimization, the present contribution proposes a new experimental and numerical investigation method for studying ASG performances. In order to study the structure of 3D turbulent flows and energy losses in a screw, the Navier Stokes equations a classical turbulence model are solved. As demonstrated, the strength of this method is to allow studying accurately the ASG performance only with usual coefficients in the turbulent closure models. These simulations are achieved for various flow conditions using the geometry of a laboratory-scale screw. It is shown that, the modeled values of torques and efficiencies are in very strong agreement with the experimental ones. Moreover, numerical simulation appears to be a reliable tool for predicting ASG performance which are found higher than 80%.
•3D numerical model is developed to determine the Archimedean Screw Turbine performance.•Experimental results of a laboratory scale Archimedes screw.•Good agreement between numerical and experimental values.</description><subject>Archimedes Screw Generator</subject><subject>CFD</subject><subject>Engineering Sciences</subject><subject>Experimental facilities</subject><subject>Hydropower plant</subject><subject>Other</subject><subject>Water power</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoWnaf9CDrj3YlWxHj0shhDYpBAp9nIUirRIF2wqyk5J_XxmXHsseFj5mht1B6J6SnBLKHvd5hDZNXhDKE8qJLC_QhAouM8JEcYkmRDKS0UrQa3TTdXtC6EzwaoLeF6E5HHvd-9DqGrv66C2251Y33nS4CRZq326xCxH3O8AWOr9tcXB4Hs3ON5AA_jARvvEyHRB1H-ItunK67uDud0_R18vz52KVrd-Wr4v5OjMll32mBZREzyruCiakE8CZIwa4FRvDuKgYldptrJyBhqosqGbWFsRtJCuZYMk8RQ9j7k7X6hB9o-NZBe3Var5WAyNFKajksxNN2mrUmhi6LoL7M1Cihg7VXo0dqqHDgaYOk-1ptEH64-Qhqs54aA1YH8H0ygb_f8APprl82g</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Dellinger, Guilhem</creator><creator>Garambois, Pierre-André</creator><creator>Dellinger, Nicolas</creator><creator>Dufresne, Matthieu</creator><creator>Terfous, Abdelali</creator><creator>Vazquez, Jose</creator><creator>Ghenaim, Abdellah</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6148-9335</orcidid><orcidid>https://orcid.org/0000-0001-8350-6741</orcidid></search><sort><creationdate>20180401</creationdate><title>Computational fluid dynamics modeling for the design of Archimedes Screw Generator</title><author>Dellinger, Guilhem ; Garambois, Pierre-André ; Dellinger, Nicolas ; Dufresne, Matthieu ; Terfous, Abdelali ; Vazquez, Jose ; Ghenaim, Abdellah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-a8e30a547f2689f8e76f0ce7d8bc6784619afbd95eae4321a6dd20fb9636868e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Archimedes Screw Generator</topic><topic>CFD</topic><topic>Engineering Sciences</topic><topic>Experimental facilities</topic><topic>Hydropower plant</topic><topic>Other</topic><topic>Water power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dellinger, Guilhem</creatorcontrib><creatorcontrib>Garambois, Pierre-André</creatorcontrib><creatorcontrib>Dellinger, Nicolas</creatorcontrib><creatorcontrib>Dufresne, Matthieu</creatorcontrib><creatorcontrib>Terfous, Abdelali</creatorcontrib><creatorcontrib>Vazquez, Jose</creatorcontrib><creatorcontrib>Ghenaim, Abdellah</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dellinger, Guilhem</au><au>Garambois, Pierre-André</au><au>Dellinger, Nicolas</au><au>Dufresne, Matthieu</au><au>Terfous, Abdelali</au><au>Vazquez, Jose</au><au>Ghenaim, Abdellah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational fluid dynamics modeling for the design of Archimedes Screw Generator</atitle><jtitle>Renewable energy</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>118</volume><spage>847</spage><epage>857</epage><pages>847-857</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>The Archimedean Screw Generator (ASG) allows transforming potential energy of a fluid into mechanical energy and is convenient for low-head hydraulic sites. As it is a new and growing technology with few guidelines for design and performance optimization, the present contribution proposes a new experimental and numerical investigation method for studying ASG performances. In order to study the structure of 3D turbulent flows and energy losses in a screw, the Navier Stokes equations a classical turbulence model are solved. As demonstrated, the strength of this method is to allow studying accurately the ASG performance only with usual coefficients in the turbulent closure models. These simulations are achieved for various flow conditions using the geometry of a laboratory-scale screw. It is shown that, the modeled values of torques and efficiencies are in very strong agreement with the experimental ones. Moreover, numerical simulation appears to be a reliable tool for predicting ASG performance which are found higher than 80%.
•3D numerical model is developed to determine the Archimedean Screw Turbine performance.•Experimental results of a laboratory scale Archimedes screw.•Good agreement between numerical and experimental values.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2017.10.093</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6148-9335</orcidid><orcidid>https://orcid.org/0000-0001-8350-6741</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2018-04, Vol.118, p.847-857 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02381975v1 |
source | ScienceDirect Freedom Collection |
subjects | Archimedes Screw Generator CFD Engineering Sciences Experimental facilities Hydropower plant Other Water power |
title | Computational fluid dynamics modeling for the design of Archimedes Screw Generator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20fluid%20dynamics%20modeling%20for%20the%20design%20of%20Archimedes%20Screw%20Generator&rft.jtitle=Renewable%20energy&rft.au=Dellinger,%20Guilhem&rft.date=2018-04-01&rft.volume=118&rft.spage=847&rft.epage=857&rft.pages=847-857&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2017.10.093&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02381975v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-a8e30a547f2689f8e76f0ce7d8bc6784619afbd95eae4321a6dd20fb9636868e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |