Loading…
Giant Fine Structure Splitting of the Bright Exciton in a Bulk MAPbBr 3 Single Crystal
Exciton fine structure splitting in semiconductors reflects the underlying symmetry of the crystal and quantum confinement. Because the latter factor strongly enhances the exchange interaction, most work has focused on nanostructures. Here, we report on the first observation of the bright exciton fi...
Saved in:
Published in: | Nano letters 2019-10, Vol.19 (10), p.7054-7061 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exciton fine structure splitting in semiconductors reflects the underlying symmetry of the crystal and quantum confinement. Because the latter factor strongly enhances the exchange interaction, most work has focused on nanostructures. Here, we report on the first observation of the bright exciton fine structure splitting in a bulk semiconductor crystal, where the impact of quantum confinement can be specifically excluded, giving access to the intrinsic properties of the material. Detailed investigation of the exciton photoluminescence and reflection spectra of a bulk methylammonium lead tribromide single crystal reveals a zero magnetic field splitting as large as ∼200 μeV. This result provides an important starting point for the discussion of the origin of the large bright exciton fine structure splitting observed in perovskite nanocrystals. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b02520 |