Loading…

Molecular basis of diseases caused by the mtDNA mutation m.8969G>A in the subunit a of ATP synthase

The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A)...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. Bioenergetics 2018-08, Vol.1859 (8), p.602-611
Main Authors: Skoczeń, Natalia, Dautant, Alain, Binko, Krystyna, Godard, François, Bouhier, Marine, Su, Xin, Lasserre, Jean-Paul, Giraud, Marie-France, Tribouillard-Tanvier, Déborah, Chen, Huimei, di Rago, Jean-Paul, Kucharczyk, Roza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3579-3d563728e566223459a3e7849e14e6b4405d2bf5c3c32e4417da1a54e7991bb43
cites cdi_FETCH-LOGICAL-c3579-3d563728e566223459a3e7849e14e6b4405d2bf5c3c32e4417da1a54e7991bb43
container_end_page 611
container_issue 8
container_start_page 602
container_title Biochimica et biophysica acta. Bioenergetics
container_volume 1859
creator Skoczeń, Natalia
Dautant, Alain
Binko, Krystyna
Godard, François
Bouhier, Marine
Su, Xin
Lasserre, Jean-Paul
Giraud, Marie-France
Tribouillard-Tanvier, Déborah
Chen, Huimei
di Rago, Jean-Paul
Kucharczyk, Roza
description The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20–30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules. •The pathogenic m.8969G>A mutation block the proton translocation in FO domain of ATP synthase.•This results from the establishment of a hydrogen bond between aN175 and aE172 critical for protons exit.•The conserved aS175 (aS148 in human) in subunit a of ATP synthase is not involved in proton transport.•The long-distance suppressors of aN175 hold promise for the development of therapeutic molecules.
doi_str_mv 10.1016/j.bbabio.2018.05.009
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02398396v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005272818301245</els_id><sourcerecordid>2042232468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-3d563728e566223459a3e7849e14e6b4405d2bf5c3c32e4417da1a54e7991bb43</originalsourceid><addsrcrecordid>eNp9kc1O3DAUhS1EVaa0b4CQl3Qxqf9jb5Ai2kKlaWFB15bt3NF4lMQQJ0jz9vU0lGVXlq6_c-7RPQhdUFJRQtWXfeW98zFVjFBdEVkRYk7QiurarJmS5BStCCFyzWqmz9CHnPekyATj79EZM3WtldYrFH6mDsLcuRF7l2PGaYvbmMFlyDi4OUOL_QFPO8D99PVXg_t5clNMA-4rbZS5vW5wHP7-59nPQ5ywO3o0jw84H4ZpV4w-ondb12X49Pqeo9_fvz3e3K0397c_bprNOnBZQvNWKl7CglSKMS6kcRxqLQxQAcoLQWTL_FYGHjgDIWjdOuqkgNoY6r3g5-jz4rtznX0aY-_Gg00u2rtmY48zwrjR3KgXWtirhX0a0_MMebJ9zAG6zg2Q5mwZESUDE0oXVCxoGFPOI2zfvCmxxyrs3i5V2GMVlkhbqiiyy9cNs--hfRP9u30BrhcAyk1eIow2hwhDgDaOECbbpvj_DX8AelmYGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042232468</pqid></control><display><type>article</type><title>Molecular basis of diseases caused by the mtDNA mutation m.8969G&gt;A in the subunit a of ATP synthase</title><source>ScienceDirect Freedom Collection</source><creator>Skoczeń, Natalia ; Dautant, Alain ; Binko, Krystyna ; Godard, François ; Bouhier, Marine ; Su, Xin ; Lasserre, Jean-Paul ; Giraud, Marie-France ; Tribouillard-Tanvier, Déborah ; Chen, Huimei ; di Rago, Jean-Paul ; Kucharczyk, Roza</creator><creatorcontrib>Skoczeń, Natalia ; Dautant, Alain ; Binko, Krystyna ; Godard, François ; Bouhier, Marine ; Su, Xin ; Lasserre, Jean-Paul ; Giraud, Marie-France ; Tribouillard-Tanvier, Déborah ; Chen, Huimei ; di Rago, Jean-Paul ; Kucharczyk, Roza</creatorcontrib><description>The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G&gt;A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20–30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules. •The pathogenic m.8969G&gt;A mutation block the proton translocation in FO domain of ATP synthase.•This results from the establishment of a hydrogen bond between aN175 and aE172 critical for protons exit.•The conserved aS175 (aS148 in human) in subunit a of ATP synthase is not involved in proton transport.•The long-distance suppressors of aN175 hold promise for the development of therapeutic molecules.</description><identifier>ISSN: 0005-2728</identifier><identifier>EISSN: 1879-2650</identifier><identifier>DOI: 10.1016/j.bbabio.2018.05.009</identifier><identifier>PMID: 29778688</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; ATP synthase ; Catalytic Domain ; DNA, Mitochondrial - genetics ; Life Sciences ; Metabolic disease ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Diseases - enzymology ; Mitochondrial Diseases - genetics ; Mitochondrial Diseases - pathology ; Mitochondrial Proton-Translocating ATPases - chemistry ; Mitochondrial Proton-Translocating ATPases - genetics ; Mitochondrial Proton-Translocating ATPases - metabolism ; MT-ATP6 ; mtDNA ; Mutation ; Oxidative phosphorylation ; Protein Conformation ; Protein Subunits ; Protons ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Sequence Homology ; Subunit a</subject><ispartof>Biochimica et biophysica acta. Bioenergetics, 2018-08, Vol.1859 (8), p.602-611</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-3d563728e566223459a3e7849e14e6b4405d2bf5c3c32e4417da1a54e7991bb43</citedby><cites>FETCH-LOGICAL-c3579-3d563728e566223459a3e7849e14e6b4405d2bf5c3c32e4417da1a54e7991bb43</cites><orcidid>0000-0002-6238-667X ; 0000-0002-7145-278X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29778688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02398396$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Skoczeń, Natalia</creatorcontrib><creatorcontrib>Dautant, Alain</creatorcontrib><creatorcontrib>Binko, Krystyna</creatorcontrib><creatorcontrib>Godard, François</creatorcontrib><creatorcontrib>Bouhier, Marine</creatorcontrib><creatorcontrib>Su, Xin</creatorcontrib><creatorcontrib>Lasserre, Jean-Paul</creatorcontrib><creatorcontrib>Giraud, Marie-France</creatorcontrib><creatorcontrib>Tribouillard-Tanvier, Déborah</creatorcontrib><creatorcontrib>Chen, Huimei</creatorcontrib><creatorcontrib>di Rago, Jean-Paul</creatorcontrib><creatorcontrib>Kucharczyk, Roza</creatorcontrib><title>Molecular basis of diseases caused by the mtDNA mutation m.8969G&gt;A in the subunit a of ATP synthase</title><title>Biochimica et biophysica acta. Bioenergetics</title><addtitle>Biochim Biophys Acta Bioenerg</addtitle><description>The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G&gt;A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20–30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules. •The pathogenic m.8969G&gt;A mutation block the proton translocation in FO domain of ATP synthase.•This results from the establishment of a hydrogen bond between aN175 and aE172 critical for protons exit.•The conserved aS175 (aS148 in human) in subunit a of ATP synthase is not involved in proton transport.•The long-distance suppressors of aN175 hold promise for the development of therapeutic molecules.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>ATP synthase</subject><subject>Catalytic Domain</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Life Sciences</subject><subject>Metabolic disease</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Diseases - enzymology</subject><subject>Mitochondrial Diseases - genetics</subject><subject>Mitochondrial Diseases - pathology</subject><subject>Mitochondrial Proton-Translocating ATPases - chemistry</subject><subject>Mitochondrial Proton-Translocating ATPases - genetics</subject><subject>Mitochondrial Proton-Translocating ATPases - metabolism</subject><subject>MT-ATP6</subject><subject>mtDNA</subject><subject>Mutation</subject><subject>Oxidative phosphorylation</subject><subject>Protein Conformation</subject><subject>Protein Subunits</subject><subject>Protons</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Sequence Homology</subject><subject>Subunit a</subject><issn>0005-2728</issn><issn>1879-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAUhS1EVaa0b4CQl3Qxqf9jb5Ai2kKlaWFB15bt3NF4lMQQJ0jz9vU0lGVXlq6_c-7RPQhdUFJRQtWXfeW98zFVjFBdEVkRYk7QiurarJmS5BStCCFyzWqmz9CHnPekyATj79EZM3WtldYrFH6mDsLcuRF7l2PGaYvbmMFlyDi4OUOL_QFPO8D99PVXg_t5clNMA-4rbZS5vW5wHP7-59nPQ5ywO3o0jw84H4ZpV4w-ondb12X49Pqeo9_fvz3e3K0397c_bprNOnBZQvNWKl7CglSKMS6kcRxqLQxQAcoLQWTL_FYGHjgDIWjdOuqkgNoY6r3g5-jz4rtznX0aY-_Gg00u2rtmY48zwrjR3KgXWtirhX0a0_MMebJ9zAG6zg2Q5mwZESUDE0oXVCxoGFPOI2zfvCmxxyrs3i5V2GMVlkhbqiiyy9cNs--hfRP9u30BrhcAyk1eIow2hwhDgDaOECbbpvj_DX8AelmYGg</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Skoczeń, Natalia</creator><creator>Dautant, Alain</creator><creator>Binko, Krystyna</creator><creator>Godard, François</creator><creator>Bouhier, Marine</creator><creator>Su, Xin</creator><creator>Lasserre, Jean-Paul</creator><creator>Giraud, Marie-France</creator><creator>Tribouillard-Tanvier, Déborah</creator><creator>Chen, Huimei</creator><creator>di Rago, Jean-Paul</creator><creator>Kucharczyk, Roza</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6238-667X</orcidid><orcidid>https://orcid.org/0000-0002-7145-278X</orcidid></search><sort><creationdate>201808</creationdate><title>Molecular basis of diseases caused by the mtDNA mutation m.8969G&gt;A in the subunit a of ATP synthase</title><author>Skoczeń, Natalia ; Dautant, Alain ; Binko, Krystyna ; Godard, François ; Bouhier, Marine ; Su, Xin ; Lasserre, Jean-Paul ; Giraud, Marie-France ; Tribouillard-Tanvier, Déborah ; Chen, Huimei ; di Rago, Jean-Paul ; Kucharczyk, Roza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-3d563728e566223459a3e7849e14e6b4405d2bf5c3c32e4417da1a54e7991bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>ATP synthase</topic><topic>Catalytic Domain</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Life Sciences</topic><topic>Metabolic disease</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Diseases - enzymology</topic><topic>Mitochondrial Diseases - genetics</topic><topic>Mitochondrial Diseases - pathology</topic><topic>Mitochondrial Proton-Translocating ATPases - chemistry</topic><topic>Mitochondrial Proton-Translocating ATPases - genetics</topic><topic>Mitochondrial Proton-Translocating ATPases - metabolism</topic><topic>MT-ATP6</topic><topic>mtDNA</topic><topic>Mutation</topic><topic>Oxidative phosphorylation</topic><topic>Protein Conformation</topic><topic>Protein Subunits</topic><topic>Protons</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Sequence Homology</topic><topic>Subunit a</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skoczeń, Natalia</creatorcontrib><creatorcontrib>Dautant, Alain</creatorcontrib><creatorcontrib>Binko, Krystyna</creatorcontrib><creatorcontrib>Godard, François</creatorcontrib><creatorcontrib>Bouhier, Marine</creatorcontrib><creatorcontrib>Su, Xin</creatorcontrib><creatorcontrib>Lasserre, Jean-Paul</creatorcontrib><creatorcontrib>Giraud, Marie-France</creatorcontrib><creatorcontrib>Tribouillard-Tanvier, Déborah</creatorcontrib><creatorcontrib>Chen, Huimei</creatorcontrib><creatorcontrib>di Rago, Jean-Paul</creatorcontrib><creatorcontrib>Kucharczyk, Roza</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skoczeń, Natalia</au><au>Dautant, Alain</au><au>Binko, Krystyna</au><au>Godard, François</au><au>Bouhier, Marine</au><au>Su, Xin</au><au>Lasserre, Jean-Paul</au><au>Giraud, Marie-France</au><au>Tribouillard-Tanvier, Déborah</au><au>Chen, Huimei</au><au>di Rago, Jean-Paul</au><au>Kucharczyk, Roza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis of diseases caused by the mtDNA mutation m.8969G&gt;A in the subunit a of ATP synthase</atitle><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle><addtitle>Biochim Biophys Acta Bioenerg</addtitle><date>2018-08</date><risdate>2018</risdate><volume>1859</volume><issue>8</issue><spage>602</spage><epage>611</epage><pages>602-611</pages><issn>0005-2728</issn><eissn>1879-2650</eissn><abstract>The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G&gt;A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20–30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules. •The pathogenic m.8969G&gt;A mutation block the proton translocation in FO domain of ATP synthase.•This results from the establishment of a hydrogen bond between aN175 and aE172 critical for protons exit.•The conserved aS175 (aS148 in human) in subunit a of ATP synthase is not involved in proton transport.•The long-distance suppressors of aN175 hold promise for the development of therapeutic molecules.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29778688</pmid><doi>10.1016/j.bbabio.2018.05.009</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6238-667X</orcidid><orcidid>https://orcid.org/0000-0002-7145-278X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2728
ispartof Biochimica et biophysica acta. Bioenergetics, 2018-08, Vol.1859 (8), p.602-611
issn 0005-2728
1879-2650
language eng
recordid cdi_hal_primary_oai_HAL_hal_02398396v1
source ScienceDirect Freedom Collection
subjects Adenosine Triphosphate - metabolism
Amino Acid Sequence
ATP synthase
Catalytic Domain
DNA, Mitochondrial - genetics
Life Sciences
Metabolic disease
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Diseases - enzymology
Mitochondrial Diseases - genetics
Mitochondrial Diseases - pathology
Mitochondrial Proton-Translocating ATPases - chemistry
Mitochondrial Proton-Translocating ATPases - genetics
Mitochondrial Proton-Translocating ATPases - metabolism
MT-ATP6
mtDNA
Mutation
Oxidative phosphorylation
Protein Conformation
Protein Subunits
Protons
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Sequence Homology
Subunit a
title Molecular basis of diseases caused by the mtDNA mutation m.8969G>A in the subunit a of ATP synthase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20of%20diseases%20caused%20by%20the%20mtDNA%20mutation%20m.8969G%3EA%20in%20the%20subunit%20a%20of%20ATP%20synthase&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Bioenergetics&rft.au=Skocze%C5%84,%20Natalia&rft.date=2018-08&rft.volume=1859&rft.issue=8&rft.spage=602&rft.epage=611&rft.pages=602-611&rft.issn=0005-2728&rft.eissn=1879-2650&rft_id=info:doi/10.1016/j.bbabio.2018.05.009&rft_dat=%3Cproquest_hal_p%3E2042232468%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3579-3d563728e566223459a3e7849e14e6b4405d2bf5c3c32e4417da1a54e7991bb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2042232468&rft_id=info:pmid/29778688&rfr_iscdi=true