Loading…

Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)

Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three pro...

Full description

Saved in:
Bibliographic Details
Published in:Current genetics 2018-08, Vol.64 (4), p.841-851
Main Authors: Hérivaux, Anaïs, Lavín, José L., de Bernonville, Thomas Dugé, Vandeputte, Patrick, Bouchara, Jean-Philippe, Gastebois, Amandine, Oguiza, José A., Papon, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503
cites cdi_FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503
container_end_page 851
container_issue 4
container_start_page 841
container_title Current genetics
container_volume 64
creator Hérivaux, Anaïs
Lavín, José L.
de Bernonville, Thomas Dugé
Vandeputte, Patrick
Bouchara, Jean-Philippe
Gastebois, Amandine
Oguiza, José A.
Papon, Nicolas
description Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in Saccharomyces cerevisiae . Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially Lipomyces starkeyi , harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution.
doi_str_mv 10.1007/s00294-017-0797-1
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02406548v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977616184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVpabZpP0AvRdBLcnAykmXLOoaQNoGFFNKehVZ_1kq81layF_bbV8JpCIWeBJrfvHkzD6HPBC4IAL9MAFSwCgivgAtekTdoRVhNKxBd_RatcoFWHXT1CfqQ0iMAoZ3g79EJFZQJaOgKPf2IYRttSv5g8RBSwsHh_riJ3uDep8kbP1r85EeVLN7a0SZs5ujHLZ56i-0hDPPkw1i6NrMxpXC0Kk0Jnz0orXsVw-6ow5QFzj-id04NyX56fk_Rr283P69vq_X997vrq3WlGbRTxTe1c461XEC2TplTnWaWOUIcMdYpXTfccdFxMGUPw3hrNHRN3SgHbQP1KTpfdHs1yH30OxWPMigvb6_WsvwBzYMa1h1IZs8Wdh_D79mmSe580nYY1GjDnCQRPHuAFors13_QxzDHMW9SKN6SlnQsU2ShdMzXjNa9OCAgS2pySU3mcGRJTRYTX56V583OmpeOvzFlgC5A2pfb2_hq9H9V_wDpPqF7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977616184</pqid></control><display><type>article</type><title>Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)</title><source>Springer Nature</source><creator>Hérivaux, Anaïs ; Lavín, José L. ; de Bernonville, Thomas Dugé ; Vandeputte, Patrick ; Bouchara, Jean-Philippe ; Gastebois, Amandine ; Oguiza, José A. ; Papon, Nicolas</creator><creatorcontrib>Hérivaux, Anaïs ; Lavín, José L. ; de Bernonville, Thomas Dugé ; Vandeputte, Patrick ; Bouchara, Jean-Philippe ; Gastebois, Amandine ; Oguiza, José A. ; Papon, Nicolas</creatorcontrib><description>Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in Saccharomyces cerevisiae . Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially Lipomyces starkeyi , harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-017-0797-1</identifier><identifier>PMID: 29249052</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation, Physiological - genetics ; Baking yeast ; Biochemistry ; Biochemistry, Molecular Biology ; Biological evolution ; Biomedical and Life Sciences ; Cell Biology ; Cellular Biology ; Cues ; Evolution, Molecular ; Evolutionary genetics ; Fungi ; Genes ; Genome, Fungal - genetics ; Genomes ; Glycerol ; Histidine ; Histidine kinase ; Histidine Kinase - genetics ; Intracellular Signaling Peptides and Proteins - genetics ; Kinases ; Life Sciences ; MAP kinase ; Microbial Genetics and Genomics ; Microbiology ; Microbiology and Parasitology ; Molecular biology ; Mycology ; Original Article ; Osmolarity ; Osmotic Pressure ; Phylogeny ; Plant Sciences ; Protein families ; Protein kinase ; Protein Kinases - genetics ; Proteins ; Proteomics ; Regulators ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomycotina ; Signal transduction ; Signaling ; Yeasts</subject><ispartof>Current genetics, 2018-08, Vol.64 (4), p.841-851</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Current Genetics is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503</citedby><cites>FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503</cites><orcidid>0000-0002-2205-2886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29249052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-angers.hal.science/hal-02406548$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hérivaux, Anaïs</creatorcontrib><creatorcontrib>Lavín, José L.</creatorcontrib><creatorcontrib>de Bernonville, Thomas Dugé</creatorcontrib><creatorcontrib>Vandeputte, Patrick</creatorcontrib><creatorcontrib>Bouchara, Jean-Philippe</creatorcontrib><creatorcontrib>Gastebois, Amandine</creatorcontrib><creatorcontrib>Oguiza, José A.</creatorcontrib><creatorcontrib>Papon, Nicolas</creatorcontrib><title>Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><addtitle>Curr Genet</addtitle><description>Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in Saccharomyces cerevisiae . Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially Lipomyces starkeyi , harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution.</description><subject>Adaptation, Physiological - genetics</subject><subject>Baking yeast</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cellular Biology</subject><subject>Cues</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Fungi</subject><subject>Genes</subject><subject>Genome, Fungal - genetics</subject><subject>Genomes</subject><subject>Glycerol</subject><subject>Histidine</subject><subject>Histidine kinase</subject><subject>Histidine Kinase - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>MAP kinase</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiology and Parasitology</subject><subject>Molecular biology</subject><subject>Mycology</subject><subject>Original Article</subject><subject>Osmolarity</subject><subject>Osmotic Pressure</subject><subject>Phylogeny</subject><subject>Plant Sciences</subject><subject>Protein families</subject><subject>Protein kinase</subject><subject>Protein Kinases - genetics</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Regulators</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomycotina</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU9r3DAQxUVpabZpP0AvRdBLcnAykmXLOoaQNoGFFNKehVZ_1kq81layF_bbV8JpCIWeBJrfvHkzD6HPBC4IAL9MAFSwCgivgAtekTdoRVhNKxBd_RatcoFWHXT1CfqQ0iMAoZ3g79EJFZQJaOgKPf2IYRttSv5g8RBSwsHh_riJ3uDep8kbP1r85EeVLN7a0SZs5ujHLZ56i-0hDPPkw1i6NrMxpXC0Kk0Jnz0orXsVw-6ow5QFzj-id04NyX56fk_Rr283P69vq_X997vrq3WlGbRTxTe1c461XEC2TplTnWaWOUIcMdYpXTfccdFxMGUPw3hrNHRN3SgHbQP1KTpfdHs1yH30OxWPMigvb6_WsvwBzYMa1h1IZs8Wdh_D79mmSe580nYY1GjDnCQRPHuAFors13_QxzDHMW9SKN6SlnQsU2ShdMzXjNa9OCAgS2pySU3mcGRJTRYTX56V583OmpeOvzFlgC5A2pfb2_hq9H9V_wDpPqF7</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Hérivaux, Anaïs</creator><creator>Lavín, José L.</creator><creator>de Bernonville, Thomas Dugé</creator><creator>Vandeputte, Patrick</creator><creator>Bouchara, Jean-Philippe</creator><creator>Gastebois, Amandine</creator><creator>Oguiza, José A.</creator><creator>Papon, Nicolas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2205-2886</orcidid></search><sort><creationdate>20180801</creationdate><title>Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)</title><author>Hérivaux, Anaïs ; Lavín, José L. ; de Bernonville, Thomas Dugé ; Vandeputte, Patrick ; Bouchara, Jean-Philippe ; Gastebois, Amandine ; Oguiza, José A. ; Papon, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Baking yeast</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cellular Biology</topic><topic>Cues</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Fungi</topic><topic>Genes</topic><topic>Genome, Fungal - genetics</topic><topic>Genomes</topic><topic>Glycerol</topic><topic>Histidine</topic><topic>Histidine kinase</topic><topic>Histidine Kinase - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>MAP kinase</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiology and Parasitology</topic><topic>Molecular biology</topic><topic>Mycology</topic><topic>Original Article</topic><topic>Osmolarity</topic><topic>Osmotic Pressure</topic><topic>Phylogeny</topic><topic>Plant Sciences</topic><topic>Protein families</topic><topic>Protein kinase</topic><topic>Protein Kinases - genetics</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Regulators</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomycotina</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hérivaux, Anaïs</creatorcontrib><creatorcontrib>Lavín, José L.</creatorcontrib><creatorcontrib>de Bernonville, Thomas Dugé</creatorcontrib><creatorcontrib>Vandeputte, Patrick</creatorcontrib><creatorcontrib>Bouchara, Jean-Philippe</creatorcontrib><creatorcontrib>Gastebois, Amandine</creatorcontrib><creatorcontrib>Oguiza, José A.</creatorcontrib><creatorcontrib>Papon, Nicolas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hérivaux, Anaïs</au><au>Lavín, José L.</au><au>de Bernonville, Thomas Dugé</au><au>Vandeputte, Patrick</au><au>Bouchara, Jean-Philippe</au><au>Gastebois, Amandine</au><au>Oguiza, José A.</au><au>Papon, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)</atitle><jtitle>Current genetics</jtitle><stitle>Curr Genet</stitle><addtitle>Curr Genet</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>64</volume><issue>4</issue><spage>841</spage><epage>851</epage><pages>841-851</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in Saccharomyces cerevisiae . Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially Lipomyces starkeyi , harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29249052</pmid><doi>10.1007/s00294-017-0797-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2205-2886</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0172-8083
ispartof Current genetics, 2018-08, Vol.64 (4), p.841-851
issn 0172-8083
1432-0983
language eng
recordid cdi_hal_primary_oai_HAL_hal_02406548v1
source Springer Nature
subjects Adaptation, Physiological - genetics
Baking yeast
Biochemistry
Biochemistry, Molecular Biology
Biological evolution
Biomedical and Life Sciences
Cell Biology
Cellular Biology
Cues
Evolution, Molecular
Evolutionary genetics
Fungi
Genes
Genome, Fungal - genetics
Genomes
Glycerol
Histidine
Histidine kinase
Histidine Kinase - genetics
Intracellular Signaling Peptides and Proteins - genetics
Kinases
Life Sciences
MAP kinase
Microbial Genetics and Genomics
Microbiology
Microbiology and Parasitology
Molecular biology
Mycology
Original Article
Osmolarity
Osmotic Pressure
Phylogeny
Plant Sciences
Protein families
Protein kinase
Protein Kinases - genetics
Proteins
Proteomics
Regulators
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomycotina
Signal transduction
Signaling
Yeasts
title Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progressive%20loss%20of%20hybrid%20histidine%20kinase%20genes%20during%20the%20evolution%20of%20budding%20yeasts%20(Saccharomycotina)&rft.jtitle=Current%20genetics&rft.au=H%C3%A9rivaux,%20Ana%C3%AFs&rft.date=2018-08-01&rft.volume=64&rft.issue=4&rft.spage=841&rft.epage=851&rft.pages=841-851&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-017-0797-1&rft_dat=%3Cproquest_hal_p%3E1977616184%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977616184&rft_id=info:pmid/29249052&rfr_iscdi=true