Loading…
Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)
Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three pro...
Saved in:
Published in: | Current genetics 2018-08, Vol.64 (4), p.841-851 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503 |
container_end_page | 851 |
container_issue | 4 |
container_start_page | 841 |
container_title | Current genetics |
container_volume | 64 |
creator | Hérivaux, Anaïs Lavín, José L. de Bernonville, Thomas Dugé Vandeputte, Patrick Bouchara, Jean-Philippe Gastebois, Amandine Oguiza, José A. Papon, Nicolas |
description | Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in
Saccharomyces cerevisiae
. Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially
Lipomyces starkeyi
, harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution. |
doi_str_mv | 10.1007/s00294-017-0797-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02406548v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977616184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVpabZpP0AvRdBLcnAykmXLOoaQNoGFFNKehVZ_1kq81layF_bbV8JpCIWeBJrfvHkzD6HPBC4IAL9MAFSwCgivgAtekTdoRVhNKxBd_RatcoFWHXT1CfqQ0iMAoZ3g79EJFZQJaOgKPf2IYRttSv5g8RBSwsHh_riJ3uDep8kbP1r85EeVLN7a0SZs5ujHLZ56i-0hDPPkw1i6NrMxpXC0Kk0Jnz0orXsVw-6ow5QFzj-id04NyX56fk_Rr283P69vq_X997vrq3WlGbRTxTe1c461XEC2TplTnWaWOUIcMdYpXTfccdFxMGUPw3hrNHRN3SgHbQP1KTpfdHs1yH30OxWPMigvb6_WsvwBzYMa1h1IZs8Wdh_D79mmSe580nYY1GjDnCQRPHuAFors13_QxzDHMW9SKN6SlnQsU2ShdMzXjNa9OCAgS2pySU3mcGRJTRYTX56V583OmpeOvzFlgC5A2pfb2_hq9H9V_wDpPqF7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977616184</pqid></control><display><type>article</type><title>Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)</title><source>Springer Nature</source><creator>Hérivaux, Anaïs ; Lavín, José L. ; de Bernonville, Thomas Dugé ; Vandeputte, Patrick ; Bouchara, Jean-Philippe ; Gastebois, Amandine ; Oguiza, José A. ; Papon, Nicolas</creator><creatorcontrib>Hérivaux, Anaïs ; Lavín, José L. ; de Bernonville, Thomas Dugé ; Vandeputte, Patrick ; Bouchara, Jean-Philippe ; Gastebois, Amandine ; Oguiza, José A. ; Papon, Nicolas</creatorcontrib><description>Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in
Saccharomyces cerevisiae
. Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially
Lipomyces starkeyi
, harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-017-0797-1</identifier><identifier>PMID: 29249052</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation, Physiological - genetics ; Baking yeast ; Biochemistry ; Biochemistry, Molecular Biology ; Biological evolution ; Biomedical and Life Sciences ; Cell Biology ; Cellular Biology ; Cues ; Evolution, Molecular ; Evolutionary genetics ; Fungi ; Genes ; Genome, Fungal - genetics ; Genomes ; Glycerol ; Histidine ; Histidine kinase ; Histidine Kinase - genetics ; Intracellular Signaling Peptides and Proteins - genetics ; Kinases ; Life Sciences ; MAP kinase ; Microbial Genetics and Genomics ; Microbiology ; Microbiology and Parasitology ; Molecular biology ; Mycology ; Original Article ; Osmolarity ; Osmotic Pressure ; Phylogeny ; Plant Sciences ; Protein families ; Protein kinase ; Protein Kinases - genetics ; Proteins ; Proteomics ; Regulators ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomycotina ; Signal transduction ; Signaling ; Yeasts</subject><ispartof>Current genetics, 2018-08, Vol.64 (4), p.841-851</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Current Genetics is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503</citedby><cites>FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503</cites><orcidid>0000-0002-2205-2886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29249052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-angers.hal.science/hal-02406548$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hérivaux, Anaïs</creatorcontrib><creatorcontrib>Lavín, José L.</creatorcontrib><creatorcontrib>de Bernonville, Thomas Dugé</creatorcontrib><creatorcontrib>Vandeputte, Patrick</creatorcontrib><creatorcontrib>Bouchara, Jean-Philippe</creatorcontrib><creatorcontrib>Gastebois, Amandine</creatorcontrib><creatorcontrib>Oguiza, José A.</creatorcontrib><creatorcontrib>Papon, Nicolas</creatorcontrib><title>Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><addtitle>Curr Genet</addtitle><description>Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in
Saccharomyces cerevisiae
. Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially
Lipomyces starkeyi
, harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution.</description><subject>Adaptation, Physiological - genetics</subject><subject>Baking yeast</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cellular Biology</subject><subject>Cues</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Fungi</subject><subject>Genes</subject><subject>Genome, Fungal - genetics</subject><subject>Genomes</subject><subject>Glycerol</subject><subject>Histidine</subject><subject>Histidine kinase</subject><subject>Histidine Kinase - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>MAP kinase</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiology and Parasitology</subject><subject>Molecular biology</subject><subject>Mycology</subject><subject>Original Article</subject><subject>Osmolarity</subject><subject>Osmotic Pressure</subject><subject>Phylogeny</subject><subject>Plant Sciences</subject><subject>Protein families</subject><subject>Protein kinase</subject><subject>Protein Kinases - genetics</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Regulators</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomycotina</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU9r3DAQxUVpabZpP0AvRdBLcnAykmXLOoaQNoGFFNKehVZ_1kq81layF_bbV8JpCIWeBJrfvHkzD6HPBC4IAL9MAFSwCgivgAtekTdoRVhNKxBd_RatcoFWHXT1CfqQ0iMAoZ3g79EJFZQJaOgKPf2IYRttSv5g8RBSwsHh_riJ3uDep8kbP1r85EeVLN7a0SZs5ujHLZ56i-0hDPPkw1i6NrMxpXC0Kk0Jnz0orXsVw-6ow5QFzj-id04NyX56fk_Rr283P69vq_X997vrq3WlGbRTxTe1c461XEC2TplTnWaWOUIcMdYpXTfccdFxMGUPw3hrNHRN3SgHbQP1KTpfdHs1yH30OxWPMigvb6_WsvwBzYMa1h1IZs8Wdh_D79mmSe580nYY1GjDnCQRPHuAFors13_QxzDHMW9SKN6SlnQsU2ShdMzXjNa9OCAgS2pySU3mcGRJTRYTX56V583OmpeOvzFlgC5A2pfb2_hq9H9V_wDpPqF7</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Hérivaux, Anaïs</creator><creator>Lavín, José L.</creator><creator>de Bernonville, Thomas Dugé</creator><creator>Vandeputte, Patrick</creator><creator>Bouchara, Jean-Philippe</creator><creator>Gastebois, Amandine</creator><creator>Oguiza, José A.</creator><creator>Papon, Nicolas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2205-2886</orcidid></search><sort><creationdate>20180801</creationdate><title>Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)</title><author>Hérivaux, Anaïs ; Lavín, José L. ; de Bernonville, Thomas Dugé ; Vandeputte, Patrick ; Bouchara, Jean-Philippe ; Gastebois, Amandine ; Oguiza, José A. ; Papon, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Baking yeast</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cellular Biology</topic><topic>Cues</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Fungi</topic><topic>Genes</topic><topic>Genome, Fungal - genetics</topic><topic>Genomes</topic><topic>Glycerol</topic><topic>Histidine</topic><topic>Histidine kinase</topic><topic>Histidine Kinase - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>MAP kinase</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiology and Parasitology</topic><topic>Molecular biology</topic><topic>Mycology</topic><topic>Original Article</topic><topic>Osmolarity</topic><topic>Osmotic Pressure</topic><topic>Phylogeny</topic><topic>Plant Sciences</topic><topic>Protein families</topic><topic>Protein kinase</topic><topic>Protein Kinases - genetics</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Regulators</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomycotina</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hérivaux, Anaïs</creatorcontrib><creatorcontrib>Lavín, José L.</creatorcontrib><creatorcontrib>de Bernonville, Thomas Dugé</creatorcontrib><creatorcontrib>Vandeputte, Patrick</creatorcontrib><creatorcontrib>Bouchara, Jean-Philippe</creatorcontrib><creatorcontrib>Gastebois, Amandine</creatorcontrib><creatorcontrib>Oguiza, José A.</creatorcontrib><creatorcontrib>Papon, Nicolas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hérivaux, Anaïs</au><au>Lavín, José L.</au><au>de Bernonville, Thomas Dugé</au><au>Vandeputte, Patrick</au><au>Bouchara, Jean-Philippe</au><au>Gastebois, Amandine</au><au>Oguiza, José A.</au><au>Papon, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina)</atitle><jtitle>Current genetics</jtitle><stitle>Curr Genet</stitle><addtitle>Curr Genet</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>64</volume><issue>4</issue><spage>841</spage><epage>851</epage><pages>841-851</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>Two-component systems (TCSs) are widely distributed cell signaling pathways used by both prokaryotic and eukaryotic organisms to cope with a wide range of environmental cues. In fungi, TCS signaling routes, that mediate perception of stimuli, correspond to a multi-step phosphorelay between three protein families including hybrid histidine kinases (HHK), histidine phosphotransfer proteins (HPt) and response regulators (RR). The best known of these fungal transduction pathways remains the Sln1(HHK)–Ypd1(HPt)–Ssk1(RR) system that governs the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway for osmo-adaptation in
Saccharomyces cerevisiae
. Although recent advances have provided a preliminary overview of the distribution of TCS proteins in the kingdom Fungi, underlying mechanisms that drive the remarkable diversity among HHKs and other TCS proteins in different fungal lineages remain unclear. More precisely, evolutionary paths that led to the appearance, transfer, duplication, and loss of the corresponding TCS genes in fungi have never been hitherto addressed. In the present study, we were particularly interested in studying the distribution of TCS modules across the so-called “budding yeasts clade” (Saccharomycotina) by interrogating the genome of 82 species. With the exception of the emergence of an additional RR (named Srr1) in the fungal CTG clade, TCS proteins Ypd1 (HPt), Ssk1 (RR), Skn7 (RR), and Rim15 (RR) are well conserved within the Saccharomycotina. Surprisingly, some species from the basal lineages, especially
Lipomyces starkeyi
, harbor several filamentous-type HHKs that appear as relict genes that have been likely retained from a common ancestor of Saccharomycotina. Overall, this analysis revealed a progressive diminution of the initial pool of HHK-encoding genes during Saccharomycotina yeast evolution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29249052</pmid><doi>10.1007/s00294-017-0797-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2205-2886</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-8083 |
ispartof | Current genetics, 2018-08, Vol.64 (4), p.841-851 |
issn | 0172-8083 1432-0983 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02406548v1 |
source | Springer Nature |
subjects | Adaptation, Physiological - genetics Baking yeast Biochemistry Biochemistry, Molecular Biology Biological evolution Biomedical and Life Sciences Cell Biology Cellular Biology Cues Evolution, Molecular Evolutionary genetics Fungi Genes Genome, Fungal - genetics Genomes Glycerol Histidine Histidine kinase Histidine Kinase - genetics Intracellular Signaling Peptides and Proteins - genetics Kinases Life Sciences MAP kinase Microbial Genetics and Genomics Microbiology Microbiology and Parasitology Molecular biology Mycology Original Article Osmolarity Osmotic Pressure Phylogeny Plant Sciences Protein families Protein kinase Protein Kinases - genetics Proteins Proteomics Regulators Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomycotina Signal transduction Signaling Yeasts |
title | Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progressive%20loss%20of%20hybrid%20histidine%20kinase%20genes%20during%20the%20evolution%20of%20budding%20yeasts%20(Saccharomycotina)&rft.jtitle=Current%20genetics&rft.au=H%C3%A9rivaux,%20Ana%C3%AFs&rft.date=2018-08-01&rft.volume=64&rft.issue=4&rft.spage=841&rft.epage=851&rft.pages=841-851&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-017-0797-1&rft_dat=%3Cproquest_hal_p%3E1977616184%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-7b3fff4679008324fa8c4e4f11f1defac357f79870d2924d476dc08535af06503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977616184&rft_id=info:pmid/29249052&rfr_iscdi=true |