Loading…

Quantum optical frequency up-conversion for polarisation entangled qubits: towards interconnected quantum information devices

Realising a global quantum network requires combining individual strengths of different quantum systems to perform universal tasks, notably using flying and stationary qubits. However, transferring coherently quantum information between different systems is challenging as they usually feature differ...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2019-09, Vol.27 (18), p.25603-25610
Main Authors: Kaiser, Florian, Vergyris, Panagiotis, Martin, Anthony, Aktas, Djeylan, De Micheli, Marc P, Alibart, Olivier, Tanzilli, SĂ©bastien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Realising a global quantum network requires combining individual strengths of different quantum systems to perform universal tasks, notably using flying and stationary qubits. However, transferring coherently quantum information between different systems is challenging as they usually feature different properties, notably in terms of operation wavelength and wavepacket. To circumvent this problem for quantum photonics systems, we demonstrate a polarisation-preserving quantum frequency conversion device in which telecom wavelength photons are converted to the near infrared, at which a variety of quantum memories operate. Our device is essentially free of noise, which we demonstrate through near perfect single photon state transfer tomography and observation of high-fidelity entanglement after conversion. In addition, our guided-wave setup is robust, compact, and easily adaptable to other wavelengths. This approach therefore represents a major building block towards advantageously connecting quantum information systems based on light and matter.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.025603