Loading…
Languages and formations generated by D4 and Q8
We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proo...
Saved in:
Published in: | Theoretical computer science 2019-12, Vol.800, p.155-172 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3 |
container_end_page | 172 |
container_issue | |
container_start_page | 155 |
container_title | Theoretical computer science |
container_volume | 800 |
creator | Pin, Jean-Éric Soler-Escrivà, Xaro |
description | We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proof of the fact that the group formations generated by D4 and Q8, respectively, are two equal varieties. |
doi_str_mv | 10.1016/j.tcs.2019.10.023 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02422667v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397519306528</els_id><sourcerecordid>oai_HAL_hal_02422667v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yqGdk7ZpI07T-JQqISQ4R27ijE5bi5Iyaf-elCGO-GL5tV_Lfhi75pBx4HKxyUYTMgFcxToDkZ-wGa8rlQqhilM2gxyKNFdVec4uQthAjLKSM7ZosF9_4ZpCgr1N3OB3OHZDH5I19eRxJJu0h-Su-Gm_1pfszOE20NVvnrP3h_u31VPavDw-r5ZNakSt8tQKqMEobhSUAqrWFKVsjQPryHKZG1k5KiwqJ5VBBy3GW7msgWSNpVKYz9nNce8HbvWn73boD3rATj8tGz1pIAohpKz2PM7y46zxQwie3J-Bg57o6I2OdPREZ5Iinei5PXooPrHvyOtgOuoN2c6TGbUdun_c36aQaqI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Languages and formations generated by D4 and Q8</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Pin, Jean-Éric ; Soler-Escrivà, Xaro</creator><creatorcontrib>Pin, Jean-Éric ; Soler-Escrivà, Xaro</creatorcontrib><description>We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proof of the fact that the group formations generated by D4 and Q8, respectively, are two equal varieties.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2019.10.023</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Dihedral group ; Formal Languages and Automata Theory ; Group formation ; Group Theory ; Mathematics ; Quaternion group ; Regular languages ; Variety of monoids</subject><ispartof>Theoretical computer science, 2019-12, Vol.800, p.155-172</ispartof><rights>2019 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3</citedby><cites>FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02422667$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pin, Jean-Éric</creatorcontrib><creatorcontrib>Soler-Escrivà, Xaro</creatorcontrib><title>Languages and formations generated by D4 and Q8</title><title>Theoretical computer science</title><description>We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proof of the fact that the group formations generated by D4 and Q8, respectively, are two equal varieties.</description><subject>Computer Science</subject><subject>Dihedral group</subject><subject>Formal Languages and Automata Theory</subject><subject>Group formation</subject><subject>Group Theory</subject><subject>Mathematics</subject><subject>Quaternion group</subject><subject>Regular languages</subject><subject>Variety of monoids</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yqGdk7ZpI07T-JQqISQ4R27ijE5bi5Iyaf-elCGO-GL5tV_Lfhi75pBx4HKxyUYTMgFcxToDkZ-wGa8rlQqhilM2gxyKNFdVec4uQthAjLKSM7ZosF9_4ZpCgr1N3OB3OHZDH5I19eRxJJu0h-Su-Gm_1pfszOE20NVvnrP3h_u31VPavDw-r5ZNakSt8tQKqMEobhSUAqrWFKVsjQPryHKZG1k5KiwqJ5VBBy3GW7msgWSNpVKYz9nNce8HbvWn73boD3rATj8tGz1pIAohpKz2PM7y46zxQwie3J-Bg57o6I2OdPREZ5Iinei5PXooPrHvyOtgOuoN2c6TGbUdun_c36aQaqI</recordid><startdate>20191231</startdate><enddate>20191231</enddate><creator>Pin, Jean-Éric</creator><creator>Soler-Escrivà, Xaro</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20191231</creationdate><title>Languages and formations generated by D4 and Q8</title><author>Pin, Jean-Éric ; Soler-Escrivà, Xaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Science</topic><topic>Dihedral group</topic><topic>Formal Languages and Automata Theory</topic><topic>Group formation</topic><topic>Group Theory</topic><topic>Mathematics</topic><topic>Quaternion group</topic><topic>Regular languages</topic><topic>Variety of monoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pin, Jean-Éric</creatorcontrib><creatorcontrib>Soler-Escrivà, Xaro</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pin, Jean-Éric</au><au>Soler-Escrivà, Xaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Languages and formations generated by D4 and Q8</atitle><jtitle>Theoretical computer science</jtitle><date>2019-12-31</date><risdate>2019</risdate><volume>800</volume><spage>155</spage><epage>172</epage><pages>155-172</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proof of the fact that the group formations generated by D4 and Q8, respectively, are two equal varieties.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2019.10.023</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2019-12, Vol.800, p.155-172 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02422667v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Computer Science Dihedral group Formal Languages and Automata Theory Group formation Group Theory Mathematics Quaternion group Regular languages Variety of monoids |
title | Languages and formations generated by D4 and Q8 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Languages%20and%20formations%20generated%20by%20D4%20and%20Q8&rft.jtitle=Theoretical%20computer%20science&rft.au=Pin,%20Jean-%C3%89ric&rft.date=2019-12-31&rft.volume=800&rft.spage=155&rft.epage=172&rft.pages=155-172&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2019.10.023&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02422667v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |