Loading…

Languages and formations generated by D4 and Q8

We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proo...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science 2019-12, Vol.800, p.155-172
Main Authors: Pin, Jean-Éric, Soler-Escrivà, Xaro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3
cites cdi_FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3
container_end_page 172
container_issue
container_start_page 155
container_title Theoretical computer science
container_volume 800
creator Pin, Jean-Éric
Soler-Escrivà, Xaro
description We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proof of the fact that the group formations generated by D4 and Q8, respectively, are two equal varieties.
doi_str_mv 10.1016/j.tcs.2019.10.023
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02422667v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397519306528</els_id><sourcerecordid>oai_HAL_hal_02422667v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yqGdk7ZpI07T-JQqISQ4R27ijE5bi5Iyaf-elCGO-GL5tV_Lfhi75pBx4HKxyUYTMgFcxToDkZ-wGa8rlQqhilM2gxyKNFdVec4uQthAjLKSM7ZosF9_4ZpCgr1N3OB3OHZDH5I19eRxJJu0h-Su-Gm_1pfszOE20NVvnrP3h_u31VPavDw-r5ZNakSt8tQKqMEobhSUAqrWFKVsjQPryHKZG1k5KiwqJ5VBBy3GW7msgWSNpVKYz9nNce8HbvWn73boD3rATj8tGz1pIAohpKz2PM7y46zxQwie3J-Bg57o6I2OdPREZ5Iinei5PXooPrHvyOtgOuoN2c6TGbUdun_c36aQaqI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Languages and formations generated by D4 and Q8</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Pin, Jean-Éric ; Soler-Escrivà, Xaro</creator><creatorcontrib>Pin, Jean-Éric ; Soler-Escrivà, Xaro</creatorcontrib><description>We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proof of the fact that the group formations generated by D4 and Q8, respectively, are two equal varieties.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2019.10.023</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Dihedral group ; Formal Languages and Automata Theory ; Group formation ; Group Theory ; Mathematics ; Quaternion group ; Regular languages ; Variety of monoids</subject><ispartof>Theoretical computer science, 2019-12, Vol.800, p.155-172</ispartof><rights>2019 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3</citedby><cites>FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02422667$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pin, Jean-Éric</creatorcontrib><creatorcontrib>Soler-Escrivà, Xaro</creatorcontrib><title>Languages and formations generated by D4 and Q8</title><title>Theoretical computer science</title><description>We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proof of the fact that the group formations generated by D4 and Q8, respectively, are two equal varieties.</description><subject>Computer Science</subject><subject>Dihedral group</subject><subject>Formal Languages and Automata Theory</subject><subject>Group formation</subject><subject>Group Theory</subject><subject>Mathematics</subject><subject>Quaternion group</subject><subject>Regular languages</subject><subject>Variety of monoids</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yqGdk7ZpI07T-JQqISQ4R27ijE5bi5Iyaf-elCGO-GL5tV_Lfhi75pBx4HKxyUYTMgFcxToDkZ-wGa8rlQqhilM2gxyKNFdVec4uQthAjLKSM7ZosF9_4ZpCgr1N3OB3OHZDH5I19eRxJJu0h-Su-Gm_1pfszOE20NVvnrP3h_u31VPavDw-r5ZNakSt8tQKqMEobhSUAqrWFKVsjQPryHKZG1k5KiwqJ5VBBy3GW7msgWSNpVKYz9nNce8HbvWn73boD3rATj8tGz1pIAohpKz2PM7y46zxQwie3J-Bg57o6I2OdPREZ5Iinei5PXooPrHvyOtgOuoN2c6TGbUdun_c36aQaqI</recordid><startdate>20191231</startdate><enddate>20191231</enddate><creator>Pin, Jean-Éric</creator><creator>Soler-Escrivà, Xaro</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20191231</creationdate><title>Languages and formations generated by D4 and Q8</title><author>Pin, Jean-Éric ; Soler-Escrivà, Xaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Science</topic><topic>Dihedral group</topic><topic>Formal Languages and Automata Theory</topic><topic>Group formation</topic><topic>Group Theory</topic><topic>Mathematics</topic><topic>Quaternion group</topic><topic>Regular languages</topic><topic>Variety of monoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pin, Jean-Éric</creatorcontrib><creatorcontrib>Soler-Escrivà, Xaro</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pin, Jean-Éric</au><au>Soler-Escrivà, Xaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Languages and formations generated by D4 and Q8</atitle><jtitle>Theoretical computer science</jtitle><date>2019-12-31</date><risdate>2019</risdate><volume>800</volume><spage>155</spage><epage>172</epage><pages>155-172</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>We describe the two classes of languages recognized by the groups D4 and Q8, respectively. Then we show that the formations of languages generated by these two classes are the same. We also prove that these two formations are closed under inverses of morphisms, which yields a language theoretic proof of the fact that the group formations generated by D4 and Q8, respectively, are two equal varieties.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2019.10.023</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2019-12, Vol.800, p.155-172
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_02422667v1
source ScienceDirect Freedom Collection 2022-2024
subjects Computer Science
Dihedral group
Formal Languages and Automata Theory
Group formation
Group Theory
Mathematics
Quaternion group
Regular languages
Variety of monoids
title Languages and formations generated by D4 and Q8
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Languages%20and%20formations%20generated%20by%20D4%20and%20Q8&rft.jtitle=Theoretical%20computer%20science&rft.au=Pin,%20Jean-%C3%89ric&rft.date=2019-12-31&rft.volume=800&rft.spage=155&rft.epage=172&rft.pages=155-172&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2019.10.023&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02422667v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2893-d2080c91c905207bc456bcf0dfed163c67fe4da9f69caf0ba1871680e68a599a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true