Loading…
Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance
While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These pa...
Saved in:
Published in: | Soft matter 2020-01, Vol.16 (2), p.494-504 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843 |
container_end_page | 504 |
container_issue | 2 |
container_start_page | 494 |
container_title | Soft matter |
container_volume | 16 |
creator | Thomen, Philippe Valentin, Jules D P Bitbol, Anne-Florence Henry, Nelly |
description | While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These patterns reported here appear with non-motile bacteria, which excludes both chemotactic origins and other motility-based ones. We demonstrate that a minimal physical model based on phase separation describes them well. To confirm the predictive capacity of our model, we tune the cell-cell and cell-surface interactions using cells expressing different surface appendages. We further explain how F pilus-bearing cells enroll their wild type kindred, poorly piliated, into their typical pattern when mixed together. This work supports the hypothesis that purely physicochemical processes, such as the interplay of cell-cell and cell-surface interactions, can drive the emergence of a highly organized spatial structure that is potentially decisive for community fate and for biological functions. |
doi_str_mv | 10.1039/c9sm01375j |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02445919v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331811186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqVw4QcgS1wKUlp77bXXxyoqFJSqh4LEbTV2xtSRd73YG0T-fR1ScuA0X49ezcxLyFvOLjgT5tKZMjAudLt5Rk65lnKhOtk9P-bixwl5VcqGMdFJrl6SE8E7JlXbnBJ7P8Ec0ozDlDJEWqsZ80h9ysN-MNIw0usL6lIM1IbkQxwKxT9ThDDimtodBVrCMEWk08OuBFdFcMT8c0ctRBgdviYvPMSCb57iGfn-6frb8maxuvv8ZXm1WjjRqXmhORrVaMkUuEZ7cKrtjAep_VoA88bZtQamNFgP1slWGYMMrfMaFK-HiTPy4aD7ALGfchgg7_oEob-5WvX7HmukbA03v3llzw_slNOvLZa5H0JxGOvCmLalb0TTcMmE2Mu-_w_dpG0e6yWVqo_knHeqUh8PlMuplIz-uAFn_d6lfmnub_-69LXC754kt3bA9RH9Z4t4BHzhjLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331811186</pqid></control><display><type>article</type><title>Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Thomen, Philippe ; Valentin, Jules D P ; Bitbol, Anne-Florence ; Henry, Nelly</creator><creatorcontrib>Thomen, Philippe ; Valentin, Jules D P ; Bitbol, Anne-Florence ; Henry, Nelly</creatorcontrib><description>While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These patterns reported here appear with non-motile bacteria, which excludes both chemotactic origins and other motility-based ones. We demonstrate that a minimal physical model based on phase separation describes them well. To confirm the predictive capacity of our model, we tune the cell-cell and cell-surface interactions using cells expressing different surface appendages. We further explain how F pilus-bearing cells enroll their wild type kindred, poorly piliated, into their typical pattern when mixed together. This work supports the hypothesis that purely physicochemical processes, such as the interplay of cell-cell and cell-surface interactions, can drive the emergence of a highly organized spatial structure that is potentially decisive for community fate and for biological functions.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm01375j</identifier><identifier>PMID: 31804652</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Appendages ; Biofilms ; Cell surface ; E coli ; Energy balance ; Pattern formation ; Phase separation ; Physics</subject><ispartof>Soft matter, 2020-01, Vol.16 (2), p.494-504</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843</citedby><cites>FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843</cites><orcidid>0000-0003-1020-494X ; 0000-0002-0224-3079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31804652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02445919$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomen, Philippe</creatorcontrib><creatorcontrib>Valentin, Jules D P</creatorcontrib><creatorcontrib>Bitbol, Anne-Florence</creatorcontrib><creatorcontrib>Henry, Nelly</creatorcontrib><title>Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These patterns reported here appear with non-motile bacteria, which excludes both chemotactic origins and other motility-based ones. We demonstrate that a minimal physical model based on phase separation describes them well. To confirm the predictive capacity of our model, we tune the cell-cell and cell-surface interactions using cells expressing different surface appendages. We further explain how F pilus-bearing cells enroll their wild type kindred, poorly piliated, into their typical pattern when mixed together. This work supports the hypothesis that purely physicochemical processes, such as the interplay of cell-cell and cell-surface interactions, can drive the emergence of a highly organized spatial structure that is potentially decisive for community fate and for biological functions.</description><subject>Appendages</subject><subject>Biofilms</subject><subject>Cell surface</subject><subject>E coli</subject><subject>Energy balance</subject><subject>Pattern formation</subject><subject>Phase separation</subject><subject>Physics</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi0EoqVw4QcgS1wKUlp77bXXxyoqFJSqh4LEbTV2xtSRd73YG0T-fR1ScuA0X49ezcxLyFvOLjgT5tKZMjAudLt5Rk65lnKhOtk9P-bixwl5VcqGMdFJrl6SE8E7JlXbnBJ7P8Ec0ozDlDJEWqsZ80h9ysN-MNIw0usL6lIM1IbkQxwKxT9ThDDimtodBVrCMEWk08OuBFdFcMT8c0ctRBgdviYvPMSCb57iGfn-6frb8maxuvv8ZXm1WjjRqXmhORrVaMkUuEZ7cKrtjAep_VoA88bZtQamNFgP1slWGYMMrfMaFK-HiTPy4aD7ALGfchgg7_oEob-5WvX7HmukbA03v3llzw_slNOvLZa5H0JxGOvCmLalb0TTcMmE2Mu-_w_dpG0e6yWVqo_knHeqUh8PlMuplIz-uAFn_d6lfmnub_-69LXC754kt3bA9RH9Z4t4BHzhjLg</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Thomen, Philippe</creator><creator>Valentin, Jules D P</creator><creator>Bitbol, Anne-Florence</creator><creator>Henry, Nelly</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1020-494X</orcidid><orcidid>https://orcid.org/0000-0002-0224-3079</orcidid></search><sort><creationdate>20200102</creationdate><title>Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance</title><author>Thomen, Philippe ; Valentin, Jules D P ; Bitbol, Anne-Florence ; Henry, Nelly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Appendages</topic><topic>Biofilms</topic><topic>Cell surface</topic><topic>E coli</topic><topic>Energy balance</topic><topic>Pattern formation</topic><topic>Phase separation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomen, Philippe</creatorcontrib><creatorcontrib>Valentin, Jules D P</creatorcontrib><creatorcontrib>Bitbol, Anne-Florence</creatorcontrib><creatorcontrib>Henry, Nelly</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomen, Philippe</au><au>Valentin, Jules D P</au><au>Bitbol, Anne-Florence</au><au>Henry, Nelly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>494</spage><epage>504</epage><pages>494-504</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These patterns reported here appear with non-motile bacteria, which excludes both chemotactic origins and other motility-based ones. We demonstrate that a minimal physical model based on phase separation describes them well. To confirm the predictive capacity of our model, we tune the cell-cell and cell-surface interactions using cells expressing different surface appendages. We further explain how F pilus-bearing cells enroll their wild type kindred, poorly piliated, into their typical pattern when mixed together. This work supports the hypothesis that purely physicochemical processes, such as the interplay of cell-cell and cell-surface interactions, can drive the emergence of a highly organized spatial structure that is potentially decisive for community fate and for biological functions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31804652</pmid><doi>10.1039/c9sm01375j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1020-494X</orcidid><orcidid>https://orcid.org/0000-0002-0224-3079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2020-01, Vol.16 (2), p.494-504 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02445919v1 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Appendages Biofilms Cell surface E coli Energy balance Pattern formation Phase separation Physics |
title | Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20pattern%20formation%20in%20E.%20coli%20biofilms%20explained%20by%20a%20simple%20physical%20energy%20balance&rft.jtitle=Soft%20matter&rft.au=Thomen,%20Philippe&rft.date=2020-01-02&rft.volume=16&rft.issue=2&rft.spage=494&rft.epage=504&rft.pages=494-504&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm01375j&rft_dat=%3Cproquest_hal_p%3E2331811186%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331811186&rft_id=info:pmid/31804652&rfr_iscdi=true |