Loading…

Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance

While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These pa...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2020-01, Vol.16 (2), p.494-504
Main Authors: Thomen, Philippe, Valentin, Jules D P, Bitbol, Anne-Florence, Henry, Nelly
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843
cites cdi_FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843
container_end_page 504
container_issue 2
container_start_page 494
container_title Soft matter
container_volume 16
creator Thomen, Philippe
Valentin, Jules D P
Bitbol, Anne-Florence
Henry, Nelly
description While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These patterns reported here appear with non-motile bacteria, which excludes both chemotactic origins and other motility-based ones. We demonstrate that a minimal physical model based on phase separation describes them well. To confirm the predictive capacity of our model, we tune the cell-cell and cell-surface interactions using cells expressing different surface appendages. We further explain how F pilus-bearing cells enroll their wild type kindred, poorly piliated, into their typical pattern when mixed together. This work supports the hypothesis that purely physicochemical processes, such as the interplay of cell-cell and cell-surface interactions, can drive the emergence of a highly organized spatial structure that is potentially decisive for community fate and for biological functions.
doi_str_mv 10.1039/c9sm01375j
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02445919v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331811186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqVw4QcgS1wKUlp77bXXxyoqFJSqh4LEbTV2xtSRd73YG0T-fR1ScuA0X49ezcxLyFvOLjgT5tKZMjAudLt5Rk65lnKhOtk9P-bixwl5VcqGMdFJrl6SE8E7JlXbnBJ7P8Ec0ozDlDJEWqsZ80h9ysN-MNIw0usL6lIM1IbkQxwKxT9ThDDimtodBVrCMEWk08OuBFdFcMT8c0ctRBgdviYvPMSCb57iGfn-6frb8maxuvv8ZXm1WjjRqXmhORrVaMkUuEZ7cKrtjAep_VoA88bZtQamNFgP1slWGYMMrfMaFK-HiTPy4aD7ALGfchgg7_oEob-5WvX7HmukbA03v3llzw_slNOvLZa5H0JxGOvCmLalb0TTcMmE2Mu-_w_dpG0e6yWVqo_knHeqUh8PlMuplIz-uAFn_d6lfmnub_-69LXC754kt3bA9RH9Z4t4BHzhjLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331811186</pqid></control><display><type>article</type><title>Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Thomen, Philippe ; Valentin, Jules D P ; Bitbol, Anne-Florence ; Henry, Nelly</creator><creatorcontrib>Thomen, Philippe ; Valentin, Jules D P ; Bitbol, Anne-Florence ; Henry, Nelly</creatorcontrib><description>While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These patterns reported here appear with non-motile bacteria, which excludes both chemotactic origins and other motility-based ones. We demonstrate that a minimal physical model based on phase separation describes them well. To confirm the predictive capacity of our model, we tune the cell-cell and cell-surface interactions using cells expressing different surface appendages. We further explain how F pilus-bearing cells enroll their wild type kindred, poorly piliated, into their typical pattern when mixed together. This work supports the hypothesis that purely physicochemical processes, such as the interplay of cell-cell and cell-surface interactions, can drive the emergence of a highly organized spatial structure that is potentially decisive for community fate and for biological functions.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm01375j</identifier><identifier>PMID: 31804652</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Appendages ; Biofilms ; Cell surface ; E coli ; Energy balance ; Pattern formation ; Phase separation ; Physics</subject><ispartof>Soft matter, 2020-01, Vol.16 (2), p.494-504</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843</citedby><cites>FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843</cites><orcidid>0000-0003-1020-494X ; 0000-0002-0224-3079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31804652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02445919$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomen, Philippe</creatorcontrib><creatorcontrib>Valentin, Jules D P</creatorcontrib><creatorcontrib>Bitbol, Anne-Florence</creatorcontrib><creatorcontrib>Henry, Nelly</creatorcontrib><title>Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These patterns reported here appear with non-motile bacteria, which excludes both chemotactic origins and other motility-based ones. We demonstrate that a minimal physical model based on phase separation describes them well. To confirm the predictive capacity of our model, we tune the cell-cell and cell-surface interactions using cells expressing different surface appendages. We further explain how F pilus-bearing cells enroll their wild type kindred, poorly piliated, into their typical pattern when mixed together. This work supports the hypothesis that purely physicochemical processes, such as the interplay of cell-cell and cell-surface interactions, can drive the emergence of a highly organized spatial structure that is potentially decisive for community fate and for biological functions.</description><subject>Appendages</subject><subject>Biofilms</subject><subject>Cell surface</subject><subject>E coli</subject><subject>Energy balance</subject><subject>Pattern formation</subject><subject>Phase separation</subject><subject>Physics</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi0EoqVw4QcgS1wKUlp77bXXxyoqFJSqh4LEbTV2xtSRd73YG0T-fR1ScuA0X49ezcxLyFvOLjgT5tKZMjAudLt5Rk65lnKhOtk9P-bixwl5VcqGMdFJrl6SE8E7JlXbnBJ7P8Ec0ozDlDJEWqsZ80h9ysN-MNIw0usL6lIM1IbkQxwKxT9ThDDimtodBVrCMEWk08OuBFdFcMT8c0ctRBgdviYvPMSCb57iGfn-6frb8maxuvv8ZXm1WjjRqXmhORrVaMkUuEZ7cKrtjAep_VoA88bZtQamNFgP1slWGYMMrfMaFK-HiTPy4aD7ALGfchgg7_oEob-5WvX7HmukbA03v3llzw_slNOvLZa5H0JxGOvCmLalb0TTcMmE2Mu-_w_dpG0e6yWVqo_knHeqUh8PlMuplIz-uAFn_d6lfmnub_-69LXC754kt3bA9RH9Z4t4BHzhjLg</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Thomen, Philippe</creator><creator>Valentin, Jules D P</creator><creator>Bitbol, Anne-Florence</creator><creator>Henry, Nelly</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1020-494X</orcidid><orcidid>https://orcid.org/0000-0002-0224-3079</orcidid></search><sort><creationdate>20200102</creationdate><title>Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance</title><author>Thomen, Philippe ; Valentin, Jules D P ; Bitbol, Anne-Florence ; Henry, Nelly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Appendages</topic><topic>Biofilms</topic><topic>Cell surface</topic><topic>E coli</topic><topic>Energy balance</topic><topic>Pattern formation</topic><topic>Phase separation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomen, Philippe</creatorcontrib><creatorcontrib>Valentin, Jules D P</creatorcontrib><creatorcontrib>Bitbol, Anne-Florence</creatorcontrib><creatorcontrib>Henry, Nelly</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomen, Philippe</au><au>Valentin, Jules D P</au><au>Bitbol, Anne-Florence</au><au>Henry, Nelly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>494</spage><epage>504</epage><pages>494-504</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>While the biofilm growth mode conveys notable thriving advantages to bacterial populations, the mechanisms of biofilm formation are still strongly debated. Here, we investigate the remarkable spontaneous formation of regular spatial patterns during the growth of an Escherichia coli biofilm. These patterns reported here appear with non-motile bacteria, which excludes both chemotactic origins and other motility-based ones. We demonstrate that a minimal physical model based on phase separation describes them well. To confirm the predictive capacity of our model, we tune the cell-cell and cell-surface interactions using cells expressing different surface appendages. We further explain how F pilus-bearing cells enroll their wild type kindred, poorly piliated, into their typical pattern when mixed together. This work supports the hypothesis that purely physicochemical processes, such as the interplay of cell-cell and cell-surface interactions, can drive the emergence of a highly organized spatial structure that is potentially decisive for community fate and for biological functions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31804652</pmid><doi>10.1039/c9sm01375j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1020-494X</orcidid><orcidid>https://orcid.org/0000-0002-0224-3079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2020-01, Vol.16 (2), p.494-504
issn 1744-683X
1744-6848
language eng
recordid cdi_hal_primary_oai_HAL_hal_02445919v1
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Appendages
Biofilms
Cell surface
E coli
Energy balance
Pattern formation
Phase separation
Physics
title Spatiotemporal pattern formation in E. coli biofilms explained by a simple physical energy balance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20pattern%20formation%20in%20E.%20coli%20biofilms%20explained%20by%20a%20simple%20physical%20energy%20balance&rft.jtitle=Soft%20matter&rft.au=Thomen,%20Philippe&rft.date=2020-01-02&rft.volume=16&rft.issue=2&rft.spage=494&rft.epage=504&rft.pages=494-504&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm01375j&rft_dat=%3Cproquest_hal_p%3E2331811186%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-71e9627406ac27fac6589fa47fd3a0f9cbd7a067abfabc45699e0ebcf7a613843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331811186&rft_id=info:pmid/31804652&rfr_iscdi=true